Metastability and Layer Dynamics for the Hyperbolic Relaxation of the Cahn–Hilliard Equation


The goal of this paper is to accurately describe the metastable dynamics of the solutions to the hyperbolic relaxation of the Cahn–Hilliard equation in a bounded interval of the real line, subject to homogeneous Neumann boundary conditions. We prove the existence of an approximately invariant manifold \(\mathcal {M}_0\) for such boundary value problem, that is we construct a narrow channel containing \(\mathcal {M}_0\) and satisfying the following property: a solution starting from the channel evolves very slowly and leaves the channel only after an exponentially long time. Moreover, in the channel the solution has a transition layer structure and we derive a system of ODEs, which accurately describes the slow dynamics of the layers. A comparison with the layer dynamics of the classic Cahn–Hilliard equation is also performed.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Alikakos, N.D., Bates, P.W., Fusco, G.: Slow motion for the Cahn–Hilliard equation in one space dimension. J. Differ. Equ. 90, 81–135 (1991)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bates, P.W., Xun, J.: Metastable patterns for the Cahn–Hilliard equation: part I. J. Differ. Equ. 111, 421–457 (1994)

    Article  Google Scholar 

  3. 3.

    Bates, P.W., Xun, J.: Metastable patterns for the Cahn–Hilliard equation: part II. Layer dynamics and slow invariant manifold. J. Differ. Equ. 117, 165–216 (1995)

    Article  Google Scholar 

  4. 4.

    Bonfoh, A., Grasselli, M., Miranville, A.: Singularly perturbed 1D Cahn–Hilliard equation revisited. Nonlinear Differ. Equ. Appl. 17, 663–695 (2010)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bronsard, L., Hilhorst, D.: On the slow dynamics for the Cahn–Hilliard equation in one space dimension. Proc. R. Soc. Lond. A 439, 669–682 (1992)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bronsard, L., Kohn, R.: On the slowness of phase boundary motion in one space dimension. Commun. Pure Appl. Math. 43, 983–997 (1990)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  Google Scholar 

  8. 8.

    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  9. 9.

    Carr, J., Gurtin, M.E., Slemrod, M.: Structure phase transitions on a finite interval. Arch. Ration. Mech. Anal. 86, 317–351 (1984)

    Article  Google Scholar 

  10. 10.

    Carr, J., Pego, R.L.: Metastable patterns in solutions of \(u_t=\varepsilon ^2u_{xx}-f(u)\). Commun. Pure Appl. Math. 42, 523–576 (1989)

    Article  Google Scholar 

  11. 11.

    Carr, J., Pego, R.L.: Invariant manifolds for metastable patterns in \(u_t=\varepsilon ^2u_{xx}-f(u)\). Proc. R. Soc. Edinb. Sect. A 116, 133–160 (1990)

    Article  Google Scholar 

  12. 12.

    Cattaneo, C.: Sulla conduzione del calore. Atti del Semin. Mat. e Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Debussche, A.: A singular perturbation of the Cahn–Hilliard equation. Asymptot. Anal. 4, 161–185 (1991)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Folino, R.: Slow motion for a hyperbolic variation of Allen–Cahn equation in one space dimension. J. Hyperbolic Differ. Equ. 14, 1–26 (2017)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Folino, R.: Metastability for hyperbolic variations of Allen–Cahn equation. In: Klingenberg, C., Westdickenberg, M. (eds.) Theory, Numerics and Applications of Hyperbolic Problems I. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol. 236, pp. 551–563. Springer, Cham (2018)

    Google Scholar 

  16. 16.

    Folino, R.: Slow motion for one-dimensional nonlinear damped hyperbolic Allen-Cahn systems. Electron. J. Differ. Equ 2019, 1–21 (2019)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Folino, R., Lattanzio, C., Mascia, C.: Metastable dynamics for hyperbolic variations of Allen–Cahn equation. Commun. Math. Sci. 15, 2055–2085 (2017)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Folino, R., Lattanzio, C., Mascia, C.: Slow dynamics for the hyperbolic Cahn–Hilliard equation in one-space dimension. Math. Methods Appl. Sci. 42, 2492–2512 (2019)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Fusco, G., Hale, J.: Slow-motion manifolds, dormant instability, and singular perturbations. J. Dyn. Differ. Equ. 1, 75–94 (1989)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Galenko, P.: Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system. Phys. Lett. A 287, 190–197 (2001)

    Article  Google Scholar 

  21. 21.

    Galenko, P., Jou, D.: Diffuse-interface model for rapid phase transformations in nonequilibrium systems. Phys. Rev. E 71, 046125 (2005)

    Article  Google Scholar 

  22. 22.

    Galenko, P., Lebedev, V.: Non-equilibrium effects in spinodal decomposition of a binary system. Phys. Lett. A 372, 985–989 (2008)

    Article  Google Scholar 

  23. 23.

    Grant, C.P.: Spinodal decomposition for the Cahn–Hilliard equation. Commun. Partial Differ. Equ. 18, 453–490 (1993)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Grant, C.P.: Slow motion in one-dimensional Cahn–Morral systems. SIAM J. Math. Anal. 26, 21–34 (1995)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Grasselli, M., Schimperna, G., Zelik, S.: On the 2D Cahn–Hilliard equation with inertial term. Commun. Partial Differ. Equ. 34, 137–170 (2009)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Grasselli, M., Schimperna, G., Zelik, S.: Trajectory and smooth attractors for Cahn–Hilliard equations with inertial term. Nonlinearity 23, 707–737 (2010)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Lecoq, N., Zapolsky, H., Galenko, P.: Evolution of the structure factor in a hyperbolic model of spinodal decomposition. Eur. Phys. J. Spec. Top. 177, 165–175 (2009)

    Article  Google Scholar 

  28. 28.

    Maier-Paape, S., Wanner, T.: Spinodal decomposition for the Cahn–Hilliard equation in higher dimensions: nonlinear dynamics. Arch. Ration. Mech. Anal. 151, 187–219 (2000)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Sun, X., Ward, M.J.: Dynamics and coarsening of interfaces for the viscous Cahn–Hilliard equation in one spatial dimension. Stud. Appl. Math. 105, 203–234 (2000)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Zheng, S.: Asymptotic behavior of solution to the Cahn–Hillard equation. Appl. Anal. 23, 165–184 (1986)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Zheng, S., Milani, A.: Exponential attractors and inertial manifolds for singular perturbations of the Cahn–Hilliard equations. Nonlinear Anal. 57, 843–877 (2004)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Zheng, S., Milani, A.: Global attractors for singular perturbations of the Cahn–Hilliard equations. J. Differ. Equ. 209, 101–139 (2005)

    MathSciNet  Article  Google Scholar 

Download references


We thank the anonymous referee for the careful review and for the comments which helped us to improve the paper.

Author information



Corresponding author

Correspondence to Raffaele Folino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Folino, R., Lattanzio, C. & Mascia, C. Metastability and Layer Dynamics for the Hyperbolic Relaxation of the Cahn–Hilliard Equation. J Dyn Diff Equat 33, 75–110 (2021).

Download citation


  • Cahn–Hilliard equation
  • Metastability
  • Layer dynamics
  • Singular perturbations