Periodic Phenomena and Driving Mechanisms in Transmission of West Nile Virus with Maturation Time


West Nile virus (WNv) transmission shows both seasonal pattern in every single year and cyclic pattern over years. In this paper we formulate a compartmental model with bird demographics and maturation time of mosquitoes during metamorphosis to study the impact of ambient temperature on the transmission and recurrence of disease. We show that avian birds serve as a reservoir of viruses, whilst maturation time affects disease transmission in sophisticated ways. It turns out that large maturation delay will lead to the extinction of mosquitoes and the disease; small maturation delay will stabilize the epidemic level of the disease; and intermediate maturation delay will cause sustainable oscillations of mosquito population, recurrence of diseases, and even mixed-mode oscillation of diseases with an alternation between oscillations of distinct large and small amplitudes. With bifurcation theory, we prove that temperature can drive the oscillation of mosquito population, which leads recurrence of WNv through the incidence interaction between mosquitoes and hosts, while the biting and transmission process itself will not generate sustained oscillations. Our results provide a sound explanation for understanding interactions between vectors and hosts, and driving mechanisms of periodic phenomena in the transmission of WNv and other mosquito-borne diseases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Abdelrazec, A., Lenhart, S., Zhu, H.: Transmission dynamics of west nile virus in mosquitoes and corvids and non-corvids. J. Math. Biol. 68, 1553–1582 (2014)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Arino, J., Wang, L., Wolkowicz, G.S.: An alternative formulation for a delayed logistic equation. J. Theor. Biol. 241, 109–119 (2005)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Berezansky, L., Braverman, E., Idels, L.: Nicholson’s blowflies differential equations revisited: main results and open problems. Appl. Math. Model. 34, 1405–1417 (2010)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bowman, C., Gumel, A.B., van Den Driessche, P., Wu, J., Zhu, H.: A mathematical model for assessing control strategies against West Nile virus. Bull. Math. Biol. 67, 1107–1133 (2005)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Brust, R.: Weight and develpoment time of different stadia of mosquitoes reared at various constant temperature. Can. Entomol. 99, 986–993 (1967)

    Article  Google Scholar 

  6. 6.

    Campbell, L.G., Martin, A.A., Lanciotti, R.S., Guble, D.J.: West Nile virus. Lancet Infect. Dis. 2, 519–529 (2002)

    Article  Google Scholar 

  7. 7.

    Centers for disease control and prevention, 2002. West Nile virus: virus history and distribution. (2002)

  8. 8.

    Centers for disease control and prevention, 2012. West Nile virus update: November 6, (2002)

  9. 9.

    Cooke, K.L., van den Driessche, P., Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352 (1999)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Cruz-Pacheco, G., Esteva, L., Montano-Hirose, J.A., Vargas, C.: Modelling the dynamics of West Nile virus. J. Math. Biol. 67, 1157–1172 (2005)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Cruz-Pacheco, G., Esteva, L., Vargas, C.: Seasonality and outbreaks in West Nile virus infection. Bull. Math. Biol. 71, 1378–1393 (2009)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Dohm, D.J., Sardelis, M.R., Turell, M.J.: Experimental vertical transmission of West Nile virus by Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 39, 640–644 (2002)

    Article  Google Scholar 

  13. 13.

    Fan, G., Liu, J., van den Driessche, P., Wu, J., Zhu, H.: A delay differential equations model for the impact of temperature on West Nile virus between birds and mosquitoes. Math. Biosci. 228(2), 119–126 (2010)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Garett-Jones, C.: Prognosis for interruption of malaria transmission through assessment of mosquitoes vectorical capacity. Nature 204, 1173–1175 (1964)

    Article  Google Scholar 

  15. 15.

    Goddard, L.B., Roth, A.E., Reisen, W.K., Scott, T.W.: Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. J. Med. Entomol. 40, 743–746 (2003)

    Article  Google Scholar 

  16. 16.

    Gurney, W., Blythe, S., Nisbet, R.: Nicholson’s blowflies revisited. Nature 287(4), 17–21 (1980)

    Article  Google Scholar 

  17. 17.

    Hagstrum, D.W., Workman, E.B.: Interaction of temperature and feeding rate in determining the rate of development of larval Culex tarsalis. Ann. Entomol. Soc. Am. 64, 668–671 (1971)

    Article  Google Scholar 

  18. 18.

    Hale, J.K., Lunel, S.M.: Introduction to Functional Differential Equations. Applied Mathematical Sciences, 99. Springer, New York (1993)

    Google Scholar 

  19. 19.

    Komar, N., Langevin, S., Nemeth, N., Edwards, E., Hettler, D., Davis, B., Bowen, R., Bunning, M.: Experimental infection of North American bird with the New York 1999 strain of West Nile virus. Emerg. Infect. Dis. 9(2003), 311–322 (1999)

    Google Scholar 

  20. 20.

    Laperriere, V., Brugger, K., Rubel, F.: Simulation of the seasonal cycles of bird, equine and human West Nile virus cases. Prev. Vet. Med. 98, 99–110 (2011)

    Article  Google Scholar 

  21. 21.

    Lassiter, M., Apperson, C., Roe, R.: Juvenile hormone metabolism during the fourth stadium and pupal stage of the south house mosquito Culex quinquefasciatus say. J. Insect Physiol. 41, 869–876 (1995)

    Article  Google Scholar 

  22. 22.

    Lewis, M., Renclawowicz, J., van den Driessche, P.: Travelling waves and spread rates for a West Nile virus model. Bull. Math. Biol. 68, 3–23 (2006)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Lord, C.C., Day, J.F.: Simulation studies of St. Louis encephalitis virus in south Florida. Vector Borne Zoonotic Dis. 1(4), 299–315 (2001)

    Article  Google Scholar 

  24. 24.

    Maidana, N.A., Yang, H.M.: Spatial spreading of west nile virus described by traveling waves. J. Theor. Biol. 258, 403–417 (2009)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Munga, S., Minakawa, N., Zhou, G.: Survivorship of immature stages of Anopheles gambiae s.l. (Diptera: Culicidae) in natural habitats in western kenya highlands. J. Med. Entomol. 44(5), 758–764 (2007)

    Article  Google Scholar 

  26. 26.

    Sander, E., Yorke, J.: Connecting period-doubling cascades to chaos. Int. J. Bifurc. Chaos Appl. Sci. Eng. 22, 1250022 (2012)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Shu, H., Wang, L., Wu, J.: Global dynamics of nicholson’s blowflies equation revisited: onset and termination of nonlinear oscillations. J. Differ. Equ. 255, 2565–2586 (2013)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Simpson, J.E., Hurtado, P.J., Medlock, J., Molaei, G., Andreadis, T.G., Galvani, A.P., Diuk-Wasser, M.A.: Vector host-feeding preference drive transmission of multi-host pathogens: West Nile virus as a model system. Proc. R. Soc. B 279, 924–933 (2012)

    Google Scholar 

  29. 29.

    Smith, H.J.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence, RI (1995)

    Google Scholar 

  30. 30.

    Thomas, D., Weedermann, M., Billings, L., Hoffacker, J., Washington -Allen, R.A.: When to spray: a time-scale calculus approach to controlling the impact of West Nile virus. Ecol. Soc. 14(2) (2009)

  31. 31.

    Tuno, N., Okeka, W., Minakawa, N., Takagi, M.: Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) larvae in western kenya highland forest. J. Med. Entomol. 42(3), 270–277 (2005)

    Article  Google Scholar 

  32. 32.

    van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Wan, H., Zhu, H.: A new model with delay for mosquito population dynamics. Math. Biosci. Eng. 11(6), 1395–1410 (2014)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Wang, J., Ogden, N.H., Zhu, H.: The impact of weather conditions on Culex pipiens and Culex restuans (Diptera: Culicidae) abundance: a case study in Peel region. J. Med. Entomol. 48(2), 468–475 (2011)

    Article  Google Scholar 

  35. 35.

    Wei, J., Li, M.Y.: Hopf bifurcation analysis in a delayed nicholson blowflies equation. Nonlinear Anal. 60, 1351–1367 (2005)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Wolkowicz, G.S.K., Xia, H.: Global asymptotic behavior of a chemostat model with discrete delays. SIAM J. Appl. Math. 57, 1019–1043 (1997)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Wonham, M .J., de Camino Beck, T., Lewis, M .A.: An epidemiological model for West Nile virus: invasion analysis and control applications. Proc. R. Soc. Lond. Ser. B 271, 501–507 (2004)

    Article  Google Scholar 

  38. 38.

    Wonham, M.J., Lewis, M.A., Renclawowicz, J., van den Driessche, P.: Transmission asumptions generate confflicting prediction in host-vector disease models: a case study in West Nile virus. Ecol. Lett. 9, 706–725 (2006)

    Article  Google Scholar 

Download references


Funding was provided by Natural Sciences and Engineering Research Council of Canada (CA), Canadian Institute of Health Research (CIHR) (CA).

Author information



Corresponding author

Correspondence to Huaiping Zhu.

Additional information

Dedicated to Professor John (Joseph Douglas) Mallet-Paret in celebration of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shan was partially supported by the startup fund 110799 from the University of Toledo and the Simons Foundation-Collaboration Grants for Mathematicians 523360. Fan was partially supported by 2018 Summer Research Incentive Grant from the Dean of College of Letters and Sciences at Columbus State University. Zhu was partially supported by NSERC and CIHR of Canada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shan, C., Fan, G. & Zhu, H. Periodic Phenomena and Driving Mechanisms in Transmission of West Nile Virus with Maturation Time. J Dyn Diff Equat 32, 1003–1026 (2020).

Download citation


  • West Nile virus
  • Maturation delay
  • Transmission dynamics
  • Hopf bifurcation
  • Mixed-mode oscillations
  • Period-doubling