Skip to main content
Log in

Rotating Wave Solutions to Lattice Dynamical Systems I: The Anti-continuum Limit

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Rotating waves are a fascinating feature of a wide array of complex systems, particularly those arising in the study of many chemical and biological processes. With many rigorous mathematical investigations of rotating waves relying on the model exhibiting a continuous Euclidean symmetry, this work is aimed at understanding these nonlinear waves in the absence of such symmetries. Here we will consider a spatially discrete lattice dynamical system of Ginzburg–Landau type and prove the existence of rotating waves in the anti-continuum limit. This result is achieved by providing a link between the work on phase systems stemming from the study of identically coupled oscillators on finite lattices to carefully track the solutions as the size of the lattice grows. It is shown that in the infinite square lattice limit of these phase systems that a rotating wave solution exists, which can be extended to the Ginzburg–Landau system of study here. The results of this work provide a necessary first step in the investigation of rotating waves as solutions to lattice dynamical systems in an effort to understand the dynamics of such solutions outside of the idealized situation where the underlying symmetry of a differential equation can be exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barkley, D.: Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72, 164–168 (1994)

    Article  Google Scholar 

  2. Barkley, D., Kevrekidis, I.G.: A dynamical systems approach to spiral wave dynamics. Chaos 4, 453–460 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beaumont, J., Davidenko, N., Davidenko, J., Jalife, J.: Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Biophys. J. 75, 1–14 (1998)

    Article  Google Scholar 

  4. Cahn, J.: Theory of crystal growth and interface motion in crystalline materials. Acta Met. 8, 554–562 (1960)

    Article  Google Scholar 

  5. Cahn, J., Mallet-Paret, J., Van Vleck, E.: Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59, 455–493 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charette, L., LeBlanc, V.G.: Lattice symmetry-breaking perturbations for spiral waves. SIAM J. Appl. Dyn. Syst. 13, 1694–1715 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, D., Neu, J., Rosales, R.: Rotating spiral wave solutions of reaction–diffusion equations. SIAM J. Appl. Math. 35, 536–547 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cook, H., de Fontaine, D., Hillard, J.: A model for diffusion of cubic lattices and its application to the early stages of ordering. Acta Met. 17, 765–773 (1969)

    Article  Google Scholar 

  9. Cuevas, J., James, G., Kevrekidis, P.G., Law, K.J.H.: Vortex solutions for the discrete Gross-Pitaevskii equation starting from the anti-continuum limit. Physica D 238, 1422–1431 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cumin, D., Unsworth, C.P.: Generalising the Kuromoto model for the study of neuronal synchronization in the brain. Physica D 226, 181–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. DeVille, L., Ermentrout, G.B.: Phase-locked patterns of the Kuramoto model on 3-regular graphs. Chaos 26, 094820 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elmer, C.E.: Finding stationary fronts for a discrete Nagumo and wave equation; construction. Physica D 218, 11–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ermentrout, G.B.: Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM J. Appl. Math. 52, 1665–1687 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ermentrout, G.B., Kopell, N.: Frequency plateaus in a chain of weakly coupled oscillators. SIAM J. Math. Anal. 15, 215–237 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ermentrout, G.B., Kopell, N.: Phase transitions and other phenomena in chains of coupled oscillators. SIAM J. Appl. Math. 50, 1014–1052 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ermentrout, G.B., Paullet, J.: Spiral waves in spatially discrete \(\lambda -\omega \) systems. Int. J. Bifur. Chaos 8, 33–40 (1998)

    Article  MATH  Google Scholar 

  17. Ermentrout, G.B., Paullet, J., Troy, W.: The existence of spiral waves in an oscillatory reaction–diffusion system. SIAM J. Appl. Math. 54, 1386–1401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ermentrout, G.B., Ren, L.: Monotonicity of phaselocked solutions in chains and arrays of nearest-neighbour coupled oscillators. SIAM J. Appl. Math. 29, 208–234 (1998)

    Article  MATH  Google Scholar 

  19. Erneux, T., Nicolis, G.: Propagating waves in discrete bistable reaction–diffusion systems. Physica D 67, 237–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fife, P., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling wave solutions. Bull. Am. Math. Soc. 81, 1076–1078 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Firth, W.: Optical memory and spatial chaos. Phys. Rev. Lett. 61, 329–332 (1988)

    Article  MathSciNet  Google Scholar 

  22. Greenberg, J.: Spiral waves for \(\lambda -\omega \) systems. SIAM J. Appl. Math. 39, 301–309 (1980)

    Article  MathSciNet  Google Scholar 

  23. Golubitsky, M., LeBlanc, V., Melbourne, I.: Meandering of the spiral tip: an alternative approach. Nonlinear Sci. 7, 557–586 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gorelova, N.A., Bures, J.: Spiral waves of spreading depression in the isolated chicken retina. J. Neurobiol. 14, 353–363 (1983)

    Article  Google Scholar 

  25. Howard, L., Kopell, N.: Target pattern and spiral solutions to reaction–diffusion equations with more than one space dimension. Adv. Appl. Math. 2, 417–449 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, X., Troy, W.C., Yang, Q., Ma, H., Laing, C.R., Schi, S.J., Yu, J.Y.: Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24, 9897–9902 (2004)

    Article  Google Scholar 

  27. Hupkes, H.J., Pelinovsky, D., Sandstede, B.: Propagation failure in the discrete nagumo equation. Proc. Am. Math. Soc. 139, 3537–3551 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hwang, S., Kim, T., Lee, K.: Complex-periodic spiral waves in confluent cardiac cell cultures induced by localized inhomogeneities. PNAS 102, 10363–10368 (2005)

    Article  Google Scholar 

  29. Keener, J.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Keener, J., Sneyd, J.: Mathematical Physiology, Interdisciplinary Applied Mathematics 8. Springer, New York (1998)

    MATH  Google Scholar 

  31. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, New York (1984)

    Book  MATH  Google Scholar 

  32. LeBlanc, V.G.: Rotational symmetry-breaking for spiral waves. Nonlinearity 15, 1179–1203 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. LeBlanc, V.G., Wulff, C.: Translational symmetry-breaking for spiral waves. J. Nonlinear Sci. 10, 569–601 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Paullet, J., Ermentrout, G.B.: Stable rotating waves in two-dimensional discrete active media. SIAM J. Appl. Math. 54, 1720–1744 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Santos, E., Schöll, M., Sánchez-Porras, R., Dahlem, M.A., Silos, H., Unterberg, A., Dickhaus, H., Sakowitz, O.W.: Radial, spiral and reverberating waves of spreading depolarization occur in the gyrencephalic brain. Neuroimage 99, 244–255 (2014)

    Article  Google Scholar 

  36. Sandstede, B., Scheel, A., Wulff, C.: Center manifold reductions for spiral waves. Comptes R. Acad. Sci. 324, 153–158 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Sandstede, B., Scheel, A., Wulff, C.: Dynamics of spiral waves on unbounded domains using center-manifold reductions. J. Differ. Equ. 141, 122–149 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sandstede, B., Scheel, A., Wulff, C.: Bifurcations and dynamics of spiral waves. J. Nonlinear Sci. 9, 439–478 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Udeigwe, L.C., Ermentrout, G.B.: Waves and patterns on regular graphs. SIAM J. Appl. Dyn. Syst. 14, 1102–1129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Winfree, A.T.: The Geometry of Biological Time, Biomathematics 8. Springer, New York (1980)

    Book  MATH  Google Scholar 

  41. Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–636 (1972)

    Article  Google Scholar 

  42. Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differ. Equ. 96, 1–27 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by an Ontario Graduate Scholarship while at the University of Ottawa. The author is very thankful to Benoit Dionne and Victor LeBlanc for their careful reading of the work, correcting errors and making improvements to properly convey the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Bramburger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bramburger, J.J. Rotating Wave Solutions to Lattice Dynamical Systems I: The Anti-continuum Limit. J Dyn Diff Equat 31, 469–498 (2019). https://doi.org/10.1007/s10884-018-9678-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9678-7

Keywords

Navigation