Skip to main content
Log in

Rate-Independent Damage in Thermo-Viscoelastic Materials with Inertia

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We present a model for rate-independent, unidirectional, partial damage in visco-elastic materials with inertia and thermal effects. The damage process is modeled by means of an internal variable, governed by a rate-independent flow rule. The heat equation and the momentum balance for the displacements are coupled in a highly nonlinear way. Our assumptions on the corresponding energy functional also comprise the case of the Ambrosio–Tortorelli phase-field model (without passage to the brittle limit). We discuss a suitable weak formulation and prove an existence theorem obtained with the aid of a (partially) decoupled time-discrete scheme and variational convergence methods. We also carry out the asymptotic analysis for vanishing viscosity and inertia and obtain a fully rate-independent limit model for displacements and damage, which is independent of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agostiniani, V.: Second order approximations of quasistatic evolution problems in finite dimension. Discrete Contin. Dyn. Syst. 32(4), 1125–1167 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \)-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonetti, E., Bonfanti, G.: Well-posedness results for a model of damage in thermoviscoelastic materials. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(6), 1187–1208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourdin, B., Francfort, G.A., Marigo, J.-J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babadjian, J.-F., Millot, V.: Unilateral gradient flow of the Ambrosio–Tortorelli functional by minimizing movements. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(4), 779–822 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchitté, G., Mielke, A., Roubíček, T.: A complete-damage problem at small strain. Zeit. Angew. Math. Phys. 60, 205–236 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartels, S., Roubíček, T.: Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion. ESAIM Math. Model. Numer. Anal. 45(3), 477–504 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonetti, E., Schimperna, G.: Local existence for Frémond’s model of damage in elastic materials. Contin. Mech. Thermodyn. 16(4), 319–335 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonetti, E., Schimperna, G., Segatti, A.: On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Differ. Equ. 218(1), 91–116 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burenkov, V.I.: Sobolev Spaces on Domains, vol. 137. B. G. Teubner, Leipzig (1998)

    MATH  Google Scholar 

  11. Callister, W.D., Rethwisch, D.G.: Fundamentals of Materials Science and Engineering: An Integrated Approach, 4th edn. Wiley, Hoboken (2012)

    Google Scholar 

  12. Dal Maso, G., DeSimone, A., Solombrino, F.: Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. Partial Differ. Equ. 40(1–2), 125–181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dal Maso, G., Francfort, G.A., Toader, R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176(2), 165–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dal Maso, G., Lazzaroni, G.: Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 257–290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dal Maso, G., Scala, R.: Quasistatic evolution in perfect plasticity as limit of dynamic processes. J. Dyn. Differ. Equ. 26(4), 915–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eiermann, K.: Modellmäßige deutung der wärmeleitfähigkeit von hochpolymeren, teil2: Verstreckte amorphe hochpolymere. Kolloid-Zeitschrift und Zeitschrift für Polymere 199(2), 125–128 (1964)

    Article  Google Scholar 

  17. Efendiev, M.A., Mielke, A.: On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13(1), 151–167 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Francfort, G.A., Garroni, A.: A variational view of partial brittle damage evolution. Arch. Ration. Mech. Anal. 182(1), 125–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fiaschi, A., Knees, D., Stefanelli, U.: Young-measure quasi-static damage evolution. Arch. Ration. Mech. Anal. 203(2), 415–453 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Francfort, G.A., Larsen, C.J.: Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56(10), 1465–1500 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^p\) Spaces. Springer, New York (2007)

    MATH  Google Scholar 

  22. Frémond, M., Nedjar, B.: Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct. 33, 1083–1103 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feireisl, E., Petzeltová, H., Rocca, E.: Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32(11), 1345–1369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frémond, M.: Non-Smooth Thermomechanics. Springer-Verlag, Berlin, Heidelberg (2002)

    Book  MATH  Google Scholar 

  25. Giacomini, A.: Ambrosio–Tortorelli approximation of quasi-static evolution of brittle fracture. Calc. Var. Part. Differ. Equ. 22, 129–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Garroni, A., Larsen, C.J.: Threshold-based quasi-static brittle damage evolution. Arch. Ration. Mech. Anal. 194(2), 585–609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hahn, H.: Über Annäherung an Lebesgue’sche Integrale durch Riemann’sche Summen. Sitzungsber. Math. Phys. Kl. K. Akad. Wiss. Wien 123, 713–743 (1914)

    MATH  Google Scholar 

  28. Heinemann, C., Kraus, C.: Complete damage in linear elastic materials: modeling, weak formulation and existence results. Calc. Var. Part. Differ. Equ. 54(1), 217–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Halphen, B., Nguyen, Q.S.: Sur les matériaux standards généralisés. J. Mécanique 14, 39–63 (1975)

    MathSciNet  MATH  Google Scholar 

  30. Iurlano, F.: Fracture and plastic models as \(\Gamma \)-limits of damage models under different regimes. Adv. Calc. Var. 6(2), 165–189 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Klein, R.: Laser Welding of Plastics. Wiley-VCH, Hoboken (2012)

    Google Scholar 

  32. Kočvara, M., Mielke, A., Roubíček, T.: A rate-independent approach to the delamination problem. Math. Mech. Solids 11, 423–447 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Knees, D., Mielke, A., Zanini, C.: On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18(9), 1529–1569 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Knees, D., Rossi, R., Zanini, C.: A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23(4), 565–616 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, New York (2005)

    Google Scholar 

  36. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer-Verlag, Berlin, Heidelberg (1972)

    Book  MATH  Google Scholar 

  37. Larsen, C.J., Ortner, C., Süli, E.: Existence of solutions to a regularized model of dynamic fracture. Math. Models Methods Appl. Sci. 20(7), 1021–1048 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lazzaroni, G., Rossi, R., Thomas, M., Toader, R.: Some remarks on a model for rate-independent damage in thermo-visco-elastodynamics. J. Phys. Conf. Ser 727, 012009, 20 (2016)

    Article  MathSciNet  Google Scholar 

  39. Lazzaroni, G., Toader, R.: A model for crack propagation based on viscous approximation. Math. Models Methods Appl. Sci. 21(10), 2019–2047 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mielke, A.: Evolution in rate-independent systems (Ch.6). In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 2, pp. 461–559. Elsevier B.V, Amsterdam (2005)

    Chapter  Google Scholar 

  41. Mielke, A.: Differential, energetic and metric formulations for rate-independent processes (Ch. 3). In: Ambrosio, L., Savaré, G. (eds.) Nonlinear PDEs and Applications.C.I.M.E. Summer School, Cetraro, Italy 2008, pp. 87–170. Springer, Heidelberg (2011)

    Google Scholar 

  42. Martins, J.A.C., Monteiro Marques, M.D.P., Petrov, A.: On the stability of quasi-static paths for finite dimensional elastic–plastic systems with hardening. ZAMM Z. Angew. Math. Mech. 87(4), 303–313 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mielke, A., Petrov, A., Martins, J.A.C.: Convergence of solutions of kinetic variational inequalities in the rate-independent quasi-static limit. J. Math. Anal. Appl. 348(2), 1012–1020 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mielke, A., Roubíček, T.: Rate-independent damage processes in nonlinear elasticity. Math. Models Methods Appl. Sci. 16(2), 177–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mielke, A., Roubíček, T.: Rate-Independent Systems. Theory and Application, volume 193 of Applied Mathematical Sciences. Springer, New York (2015)

    MATH  Google Scholar 

  46. Martins, J.A.C., Rebrova, N.V., Sobolev, V.A.: On the (in)stability of quasi-static paths of smooth systems: definitions and sufficient conditions. Math. Methods Appl. Sci. 29(6), 741–750 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mielke, A., Roubíček, T., Stefanelli, U.: \(\Gamma \)-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Part. Differ. Equ. 31, 387–416 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mielke, A., Rossi, R., Savaré, G.: Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 25(2), 585–615 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mielke, A., Rossi, R., Savaré, G.: BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var. 18(1), 36–80 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Martins, J.A.C., Simões, F.M.F., Gastaldi, F., Monteiro Marques, M.D.P.: Dissipative graph solutions for a \(2\) degree-of-freedom quasistatic frictional contact problem. Int. J. Eng. Sci. 33(13), 1959–1986 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mielke, A., Theil, F.: On rate-independent hysteresis models. NoDEA Nonlinear Differ. Equ. Appl. 11(2), 151–189 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Nardini, L.: A note on the convergence of singularly perturbed second order potential-type equations. J. Dyn. Differ. Equ. 29(2), 783–797 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Nečas, J., Štípl, M.: A paradox in the theory of linear elasticity. Appl. Mat. 21, 431–433 (1976)

    MathSciNet  MATH  Google Scholar 

  55. Royden, H.L., Fitzpatrick, P.M.: Real Analysis, 4th edn. Prentice Hall, Boston (2010)

    MATH  Google Scholar 

  56. Roubíček, T.: Rate-independent processes in viscous solids at small strains. Math. Methods Appl. Sci. 32(7), 825–862 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Roubíček, T.: Thermodynamics of rate independent processes in viscous solids at small strains. SIAM J. Math. Anal. 40, 256–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Roubíček, T.: Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J. Math. Anal. 45(1), 101–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Roubíček, T.: Nonlinearly coupled thermo-visco-elasticity. NoDEA Nonlinear Differ. Equ. Appl. 20(3), 1243–1275 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Roubíček, T.: Nonlinear Partial Differential Equations with Applications, volume 153 of International Series of Numerical Mathematics, 2nd edn. Birkhäuser/Springer Basel AG, Basel (2013)

    Book  Google Scholar 

  61. Rossi, R., Roubíček, T.: Thermodynamics and analysis of rate-independent adhesive contact at small strains. Nonlinear Anal. 74(10), 3159–3190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Rocca, E., Rossi, R.: A degenerating PDE system for phase transitions and damage. Math. Models Methods Appl. Sci. 24(7), 1265–1341 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Rocca, E., Rossi, R.: “Entropic” solutions to a thermodynamically consistent PDE system for phase transitions and damage. SIAM J. Math. Anal. 47(4), 2519–2586 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Roubíček, T., Tomassetti, G.: Thermomechanics of damageable materials under diffusion: modelling and analysis. Z. Angew. Math. Phys. 66(6), 3535–3572 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. Roubíček, T., Thomas, M., Panagiotopoulos, C.: Stress-driven local-solution approach to quasistatic brittle delamination. Nonlinear Anal. Real World Appl. 22, 645–663 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Scala, R.: Limit of viscous dynamic processes in delamination as the viscosity and inertia vanish. ESAIM Control Optim. Calc. Var. 23(2), 593–625 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  67. Thomas, M.: Quasistatic damage evolution with spatial BV-regularization. Discrete Contin. Dyn. Syst. Ser. S 6, 235–255 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  68. Thomas, M., Mielke, A.: Damage of nonlinearly elastic materials at small strain: existence and regularity results. Zeit. angew. Math. Mech. 90(2), 88–112 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Wedler, G.: Lehrbuch der physikalischen Chemie, 4th edn. Wiley-VCH, Hoboken (1997)

    Google Scholar 

  70. Zel’dovič, J.B., Rajzer, J.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Illinois (2002)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Italian Ministry of Education, University, and Research through the PRIN 2010-11 grant for the project Calculus of Variations, by the European Research Council through the two Advanced Grants Quasistatic and Dynamic Evolution Problems in Plasticity and Fracture (290888) and Analysis of Multiscale Systems Driven by Functionals (267802), and by GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) through the project Modelli variazionali per la propagazione di fratture, la delaminazione e il danneggiamento. G.L. acknowledges also the support of the University of Würzburg, of the DFG grant SCHL 1706/2-1, of SISSA, of the University of Vienna, and of the FWF project P27052. This paper was submitted on October 24, 2014; the first referee report was received by the authors on December 6, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Lazzaroni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazzaroni, G., Rossi, R., Thomas, M. et al. Rate-Independent Damage in Thermo-Viscoelastic Materials with Inertia. J Dyn Diff Equat 30, 1311–1364 (2018). https://doi.org/10.1007/s10884-018-9666-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9666-y

Keywords

Mathematics Subject Classification

Navigation