Skip to main content
Log in

Nontrivial Solutions for Schrödinger Equation with Local Super-Quadratic Conditions

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is dedicated to studying the semilinear Schrödinger equation

$$\begin{aligned} \left\{ \begin{array}{ll} -\triangle u+V(x)u=f(x, u), \quad x\in {\mathbb {R}}^{N},\\ u\in H^{1}({\mathbb {R}}^{N}), \end{array}\right. \end{aligned}$$

where \(V\in \mathcal {C}(\mathbb {R}^N, \mathbb {R})\) is sign-changing and either periodic or coercive and \(f\in \mathcal {C}(\mathbb {R}^N\times \mathbb {R}, \mathbb {R})\) is subcritical and local super-linear (i.e. allowed to be super-linear at some \(x\in \mathbb {R}^N\) and asymptotically linear at other \(x\in \mathbb {R}^N\)). Instead of the common condition that \(\lim _{|t|\rightarrow \infty }\frac{\int _{0}^{t} f(x, s)\mathrm {d}s}{t^2}=\infty \) uniformly in \(x\in \mathbb {R}^N\), we use a local super-quadratic condition \(\lim _{|t|\rightarrow \infty }\frac{\int _{0}^{t} f(x,s)\mathrm {d}s}{t^2}=\infty \) a.e. \(x\in G\) for some domain \(G\subset \mathbb {R}^N\) to show the existence of nontrivial solutions for the above problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Carriao, P.C., Miyagaki, O.H.: Nonlinear perturbations of a periodic elliptic problem with critical growth. J. Math. Anal. Appl. 260, 133–146 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., de Morais Filho, D.C., Souto, M.A.S.: Radially symmetric solutions for a class of critical exponent elliptic problems in \(\mathbb{R}^N\). Electron. J. Differ. Equ. 7, 1–12 (1996)

    Google Scholar 

  3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrodinger equations with steep potential well. CCM 3, 549–569 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \(\mathbb{R}^{N}\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)

    Article  MATH  Google Scholar 

  6. Bartsch, T., Wang, Z.-Q., Willem, M.: The Dirichlet problem for superlinear elliptic equations. In: Chipot, M., Quittner, P. (eds.) Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 2, pp. 1–5. Elsevier, Amsterdam (2005). (Chapter 1)

    Chapter  Google Scholar 

  7. Coti Zelati, V., Rabinowitz, P.H.: Homoclinic type solutions for a semilinear elliptic PDE on \(\mathbb{R}^{N}\). Commun. Pure Appl. Math. 45, 1217–1269 (1992)

    Article  MATH  Google Scholar 

  8. Ding, Y., Lee, C.: Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms. J. Differ. Equ. 222, 137–163 (2006)

    Article  MATH  Google Scholar 

  9. Ding, Y., Luan, S.X.: Multiple solutions for a class of nonlinear Schrödinger equations. J. Differ. Equ. 207, 423–457 (2004)

    Article  MATH  Google Scholar 

  10. Ding, Y., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29(3), 397–419 (2007)

    Article  MATH  Google Scholar 

  11. Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  12. Egorov, Y., Kondratiev, V.: On Spectral Theory of Elliptic Operators. Birkhäuser, Basel (1996)

    Book  MATH  Google Scholar 

  13. Felmer, P.L., Quaas, A., Tang, M.X., Yu, J.S.: Monotonicity properties for ground states of the scalar field equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 105–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kryszewski, W., Szulkin, A.: Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. Differ. Equ. 3, 441–472 (1998)

    MATH  Google Scholar 

  15. Li, G.B., Szulkin, A.: An asymptotically periodic Schrödinger equation with indefinite linear part. Commun. Contemp. Math. 4, 763–776 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y.Q., Wang, Z.-Q., Zeng, J.: Ground states of nonlinear Schrödinger equations with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 829–837 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, S.: On superlinear Schrödinger equations with periodic potential. Calc. Var. Partial Differ. Equ. 45, 1–9 (2012)

    Article  MATH  Google Scholar 

  18. Liu, Z.L., Wang, Z.-Q.: On the Ambrosetti–Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4, 561–572 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Miyagaki, O.H.: On a class of semilinear elliptic problem in \(\mathbb{R}^N\) with critical growth. Nonlinear Anal. 29, 773–781 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pankov, A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schechter, M., Simon, B.: Unique continuation for Schrodinger operators with unbounded potentials. J. Math. Anal. Appl. 77, 482–492 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257(12), 3802–3822 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tang, X.H.: Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity. J. Math. Anal. Appl. 401, 407–415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tang, X.H.: New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation. Adv. Nonlinear Stud. 14, 361–373 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tang, X.H.: New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum. J. Math. Anal. Appl. 413, 392–410 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tang, X.H.: Non-Nehari manifold method for asymptotically periodic Schrödinger equations. Sci. China Math. 58, 715–728 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Troestler, C., Willem, M.: Nontrivial solution of a semilinear Schrödinger equation. Commun. Partial Differ. Equ. 21, 1431–1449 (1996)

    Article  MATH  Google Scholar 

  29. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  30. Willem, M., Zou, W.M.: On a Schrödinger equation with periodic potential and spectrum point zero. Indiana Univ. Math. J. 52, 109–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, M.: Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities. Nonlinear Anal. 72(5), 2620–2627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Yu.

Additional information

This work is partially supported by the NNFC (Nos. 11571370, 11471137, 11471085) of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Lin, X. & Yu, J. Nontrivial Solutions for Schrödinger Equation with Local Super-Quadratic Conditions. J Dyn Diff Equat 31, 369–383 (2019). https://doi.org/10.1007/s10884-018-9662-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9662-2

Keywords

Mathematics Subject Classification

Navigation