Skip to main content
Log in

Global Hopf Bifurcation for Differential-Algebraic Equations with State-Dependent Delay

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We develop a global Hopf bifurcation theory for differential equations with a state-dependent delay governed by an algebraic equation, using the \(S^1\)-equivariant degree. We apply the global Hopf bifurcation theory to a model of genetic regulatory dynamics with threshold type state-dependent delay vanishing at the stationary state, for a description of the global continuation of the periodic oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balanov, Z., Hu, Q., Krawcewicz, W.: Global Hopf bifurcation of differential equations with threshold-type state-dependent delay. J. Differ. Equ. 257, 2622–2670 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cooke, K., Huang, W.: On the problem of linearization for state-dependent delay differential equations. Proc. Am. Math. Soc. 124(5), 1417–1426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Goodwin, B.: Oscillatory behavior in enzymatic control processes. Adv. Enzym. Regul. 3, 425–438 (1965)

    Article  Google Scholar 

  4. Hartung, F., Krisztin, T., Walther, H.-O., Wu, J.: Chapter 5: Functional differential equations with state-dependent delays: theory and applications. In: CaÑada, P.D.A., Fonda, A. (eds.) Handbook of Differential Equations: Ordinary Differential Equations, vol. 3, pp. 435–545. North-Holland, Amsterdam (2006)

    Chapter  Google Scholar 

  5. Hu, Q.: A model of regulatory dynamics with threshold type state-dependent delay. Math. Biosci. Eng. (2017, accepted)

  6. Hu, Q., Wu, J.: Global Hopf bifurcation for differential equations with state-dependent delay. J. Differ. Equ. 248(12), 2801–2840 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Insperger, T., Stépán, G., Turi, J.: State-dependent delay in regenerative turning processes. Nonlinear Dyn. 47, 275–283 (2007)

    Article  MATH  Google Scholar 

  8. Krawcewicz, W., Wu, J.: Theory of Degrees with Applications to Bifurcations and Differential Equations, Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1997)

    Google Scholar 

  9. Mallet-Paret, J., Yorke, A.J.: Snakes: oriented families of periodic orbits, their sources, sinks, and continuation. J. Differ. Equ. 43, 419–450 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mallet-Paret, J., Nussbaum, R.: Boundary layer phenomena for differential-delay equations with state-dependent time lags, I. Arch. Ration. Mech. Anal. 120(2), 99–146 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mallet-Paret, J., Nussbaum, R.: Boundary layer phenomena for differential-delay equations with state dependent time lags: II. J. Reine Angew. Math. 477, 129–197 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Mallet-Paret, J., Nussbaum, R.: Boundary layer phenomena for differential-delay equations with state-dependent time lags: III. J. Differ. Equ. 189(2), 640–692 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mallet-Paret, J.: The Fredholm alternative for functional differential equations of mixed type. J. Dyn. Differ. Equ. 11, 1–47 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rustichini, A.: Hopf bifurcation for functional differential equations of mixed type. J. Dyn. Differ. Equ. 1, 145–177 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Smith, H.: Structured population models, threshold-type delay and functional-differential equations. Delay Differ. Equ. AMS, IA 1992, 52–64 (1991)

    Google Scholar 

  16. Smith, H.L.: Reduction of structured population models to threshold-type delay equations and functional differential equations: a case study. Math. Biosci. 113(1), 1–23 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vidossich, V.: On the structure of periodic solutions of differential equations. J. Differ. Equ. 21, 263–278 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Walther, H.: Stable periodic motion of a system using echo for position control. J. Dyn. Differ. Equ. 15(1), 143–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu, J.: Global continua of periodic solutions to some differential equations of neutral type. Tôhoku Math. J. 45, 67–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank an anonymous referee for the detailed and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwen Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q. Global Hopf Bifurcation for Differential-Algebraic Equations with State-Dependent Delay. J Dyn Diff Equat 31, 93–128 (2019). https://doi.org/10.1007/s10884-017-9640-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9640-0

Keywords

Navigation