Skip to main content
Log in

Parameterization of Invariant Manifolds for Periodic Orbits (II): A Posteriori Analysis and Computer Assisted Error Bounds

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we develop mathematically rigorous computer assisted techniques for studying high order Fourier–Taylor parameterizations of local stable/unstable manifolds for hyperbolic periodic orbits of analytic vector fields. We exploit the numerical methods developed in Castelli et al. (SIAM J Appl Dyn Syst 14(1):132–167, 2015) in order to obtain a high order Fourier–Taylor series expansion of the parameterization. The main result of the present work is an a-posteriori theorem which provides mathematically rigorous error bounds. The hypotheses of the theorem are checked with computer assistance. The argument relies on a sequence of preliminary computer assisted proofs where we validate the numerical approximation of the periodic orbit, its stable/unstable normal bundles, and the jets of the manifold to some desired order M. We illustrate our method by implementing validated computations for two dimensional manifolds in the Lorenz equations in \(\mathbb {R}^3\) and a three dimensional manifold of a suspension bridge equation in \(\mathbb {R}^4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Castelli, R., Lessard, J.-P., Mireles James, J.D.: Parameterization of invariant manifolds for periodic orbits I: efficient numerics via the floquet normal form. SIAM J. Appl. Dyn. Syst. 14(1), 132–167 (2015)

    Article  MathSciNet  Google Scholar 

  2. D’Ambrosio, L., Lessard, J.-P., Pugliese, A.: Blow-up profile for solutions of a fourth order nonlinear equation. Nonlinear Anal. 121, 280–335 (2015)

    Article  MathSciNet  Google Scholar 

  3. Castelli, R., Lessard, J.P., Mireles James, J.D.: Codes associated with the paper “parameterization of invariant manifolds for periodic orbits (ii)”. (2017). http://cosweb1.fau.edu/~jmirelesjames/parmPOpaperII.html

  4. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2), 283–328 (2003)

    Article  MathSciNet  Google Scholar 

  5. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. II. Regularity with respect to parameters. Indiana Univ. Math. J. 52(2), 329–360 (2003)

    Article  MathSciNet  Google Scholar 

  6. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ. Equ. 218(2), 444–515 (2005)

    Article  MathSciNet  Google Scholar 

  7. Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: rigorous results. J. Differ. Equ. 228(2), 530–579 (2006)

    Article  MathSciNet  Google Scholar 

  8. Haro, A., Canadell, M., Figueras, J.-L., Luque, A., Mondelo, J.M.: The Parameterization Method for Invariant Manifolds. From Rigorous Results to Effective Computations. Applied Mathematical Sciences, vol. 195, pp. XVI, 267. Springer (2016)

  9. Lanford III, O.E.: A computer-assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc. 6(3), 427–434 (1982)

    Article  MathSciNet  Google Scholar 

  10. Mireles James, J.D., Mischaikow, K.: Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps. SIAM J. Appl. Dyn. Syst. 12(2), 957–1006 (2013)

    Article  MathSciNet  Google Scholar 

  11. van den Berg, J.B., Mireles-James, J.D., Lessard, J.-P., Mischaikow, K.: Rigorous numerics for symmetric connecting orbits: even homoclinics of the Gray-Scott equation. SIAM J. Math. Anal. 43(4), 1557–1594 (2011)

    Article  MathSciNet  Google Scholar 

  12. van den Berg, J.B., James, J.D.M., Reinhardt, C.: Computing (un)stable manifolds with validated error bounds: non-resonant and resonant spectra. J. Nonlinear Sci. 26(4), 1055–1095 (2016)

    Article  MathSciNet  Google Scholar 

  13. Mireles James, J.D.: Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds. Indag. Math. 26(1), 225–265 (2015)

    Article  MathSciNet  Google Scholar 

  14. Figueras, J.-L., Haro, À.: Reliable computation of robust response tori on the verge of breakdown. SIAM J. Appl. Dyn. Syst. 11(2), 597–628 (2012)

    Article  MathSciNet  Google Scholar 

  15. Figueras, J.-Ll., Haro, A., Luque, A.: Rigorous computer-assisted application of kam theory: a modern approach. Found. Comput. Math., pp. 1–71 (2016) (accepted)

  16. Hungria, A., Lessard, J.-P., Mireles-James, J.D.: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comp. 85(299), 1427–1459 (2016)

    Article  MathSciNet  Google Scholar 

  17. Lessard, J.-P., James, J.D.M., Ransford, J.: Automatic differentiation for Fourier series and the radii polynomial approach. Phys. D 334, 174–186 (2016)

    Article  MathSciNet  Google Scholar 

  18. Castelli, R., Lessard, J.-P.: Rigorous numerics in floquet theory: computing stable and unstable bundles of periodic orbits. SIAM J. Appl. Dyn. Syst. 12(1), 204–245 (2013)

    Article  MathSciNet  Google Scholar 

  19. Castelli, R., Lessard, J.-P., James, J.D.M.: Analytic enclosure of the fundamental matrix solution. Appl. Math. 60(6), 617–636 (2015)

    Article  MathSciNet  Google Scholar 

  20. Chicone, C.: Ordinary Differential Equations with Applications, Volume 34 of Texts in Applied Mathematics, 2nd edn. Springer, New York (2006)

    Google Scholar 

  21. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. Studies in Advanced Mathematics, 2nd edn. CRC Press, Boca Raton (1999)

    Google Scholar 

  22. Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem, volume 90 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  23. McGehee, R.: The stable manifold theorem via an isolating block. In: Symposium on Ordinary Differential Equations (Univ. Minnesota, Minneapolis, Minn., 1972; dedicated to Hugh L. Turrittin). Lecture Notes in Math., Vol. 312, pp. 135–144. Springer, Berlin (1973)

    Google Scholar 

  24. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems (Montecatini Terme, 1994), volume 1609 of Lecture Notes in Math., pp. 44–118. Springer, Berlin (1995)

    Chapter  Google Scholar 

  25. Capiński, M.J., Zgliczyński, P.: Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds. Discrete Contin. Dyn. Syst. 30(3), 641–670 (2011)

    Article  MathSciNet  Google Scholar 

  26. Zgliczyński, P.: Covering relations, cone conditions and the stable manifold theorem. J. Differ. Equ. 246(5), 1774–1819 (2009)

    Article  MathSciNet  Google Scholar 

  27. Capiński, M.J., Zgliczyński, P.: Geometric proof for normally hyperbolic invariant manifolds. J. Differ. Equ. 259(11), 6215–6286 (2015)

    Article  MathSciNet  Google Scholar 

  28. Capiński, M.J.: Computer assisted existence proofs of Lyapunov orbits at \(L_2\) and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP. SIAM J. Appl. Dyn. Syst. 11(4), 1723–1753 (2012)

    Article  MathSciNet  Google Scholar 

  29. Wasieczko-Zajac, A., Capiński, M.: Geometric proof of strong stable/unstable manifolds, with application to the restrected three body problem. Topol. Methods Nonlinear Anal. 46(1), 363–399 (2015)

    Article  MathSciNet  Google Scholar 

  30. Capiński, M.J., Roldán, P.: Existence of a center manifold in a practical domain around \(L_1\) in the restricted three-body problem. SIAM J. Appl. Dyn. Syst. 11(1), 285–318 (2012)

    Article  MathSciNet  Google Scholar 

  31. Jorba, À., Zou, M.: A software package for the numerical integration of ODEs by means of high-order Taylor methods. Exp. Math. 14(1), 99–117 (2005)

    Article  MathSciNet  Google Scholar 

  32. Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 4(4), 379–456 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  34. Haro, A.: Automatic differentiation methods in computational dynamical systems: Invariant manifolds and normal forms of vector fields at fixed points. Manuscript

  35. Poincaré, H.: New methods of celestial mechanics. Vol. 1, volume 13 of History of Modern Physics and Astronomy. American Institute of Physics, New York, (1993). Periodic and asymptotic solutions, Translated from the French, Revised reprint of the 1967 English translation, With endnotes by V. I. Arnold́, Edited and with an introduction by Daniel L. Goroff

  36. Poincaré, H.: New Methods of Celestial Mechanics. Vol. 2, volume 13 of History of Modern Physics and Astronomy. American Institute of Physics, New York, (1993). Approximations by series, Translated from the French, Revised reprint of the 1967 English translation, With endnotes by V. M. Alekseev, Edited and with an introduction by Daniel L. Goroff

  37. Poincaré, H.: New Methods of Celestial Mechanics. Vol. 3, volume 13 of History of Modern Physics and Astronomy. American Institute of Physics, New York, (1993). Integral invariants and asymptotic properties of certain solutions, Translated from the French, Revised reprint of the 1967 English translation, With endnotes by G. A. Merman, Edited and with an introduction by Daniel L. Goroff

  38. Melńikov, V.K.: On the stability of a center for time-periodic perturbations. Trudy Moskov. Mat. Obšč. 12, 3–52 (1963)

    MathSciNet  Google Scholar 

  39. Delshams, A., Gidea, M., de la Llave, R., Seara, T.M.: Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation. In: Hamiltonian Dynamical Systems and Applications, NATO Sci. Peace Secur. Ser. B Phys. Biophys., pp. 285–336. Springer, Dordrecht (2008)

  40. Belbruno, E., Gidea, M., Topputo, F.: Weak stability boundary and invariant manifolds. SIAM J. Appl. Dyn. Syst. 9(3), 1061–1089 (2010)

    Article  MathSciNet  Google Scholar 

  41. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the moon. Celestial Mech. Dynam. Astronom 81(1–2), 63–73 (2001)

  42. Dellnitz, M., Junge, O., Koon, W.S., Lekien, F., Lo, M.W., Marsden, J.E., Padberg, K., Preis, R., Ross, S.D., Thiere, B.: Transport in dynamical astronomy and multibody problems. Int. J. Bifur. Chaos Appl. Sci. Eng. 15(3), 699–727 (2005)

    Article  MathSciNet  Google Scholar 

  43. Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5), 1571–1606 (2004)

    Article  MathSciNet  Google Scholar 

  44. Percival, I.C., MacKay, R.S., Meiss, J.D.: Transport in Hamiltonian systems. In: Nonlinear and Turbulent Processes in Physics, Vol. 3 (Kiev, 1983), pp. 1557–1572. Harwood Academic Publishers, Chur (1984)

  45. Friedman, M.J., Doedel, E.J.: Numerical computation and continuation of invariant manifolds connecting fixed points. SIAM J. Numer. Anal. 28(3), 789–808 (1991)

    Article  MathSciNet  Google Scholar 

  46. Doedel, E.J., Friedman, M.J.: Numerical computation of heteroclinic orbits. J. Comput. Appl. Math. 26(1–2), 155–170 (1989). (Continuation techniques and bifurcation problems)

    Article  MathSciNet  Google Scholar 

  47. Beyn, W.-J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10(3), 379–405 (1990)

    Article  MathSciNet  Google Scholar 

  48. Friedman, M.J., Doedel, E.J.: Computational methods for global analysis of homoclinic and heteroclinic orbits: a case study. J. Dyn. Differ. Equ. 5(1), 37–57 (1993)

    Article  MathSciNet  Google Scholar 

  49. Doedel, E.J., Kooi, B.W., van Voorn, G.A.K., Kuznetsov, Y.A.: Continuation of connecting orbits in 3D-ODEs. I. Point-to-cycle connections. Int. J. Bifur. Chaos Appl. Sci. Eng. 18(7), 1889–1903 (2008)

    Article  MathSciNet  Google Scholar 

  50. Doedel, E.J., Kooi, B.W., Van Voorn, G.A.K., Kuznetsov, Y.A.: Continuation of connecting orbits in 3D-ODEs. II. Cycle-to-cycle connections. Int. J. Bifur. Chaos Appl. Sci. Eng. 19(1), 159–169 (2009)

    Article  MathSciNet  Google Scholar 

  51. Neumaier, A., Rage, T.: Rigorous chaos verification in discrete dynamical systems. Phys. D 67(4), 327–346 (1993)

    Article  MathSciNet  Google Scholar 

  52. Wilczak, D.: The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof. Found. Comput. Math. 6(4), 495–535 (2006)

    Article  MathSciNet  Google Scholar 

  53. Wilczak, D.: Symmetric homoclinic solutions to the periodic orbits in the Michelson system. Topol. Methods Nonlinear Anal. 28(1), 155–170 (2006)

    MathSciNet  MATH  Google Scholar 

  54. Wilczak, D., Zgliczynski, P.: Heteroclinic connections between periodic orbits in planar restricted circular three-body problem—a computer assisted proof. Commun. Math. Phys. 234(1), 37–75 (2003)

    Article  MathSciNet  Google Scholar 

  55. Stoffer, D., Palmer, K.J.: Rigorous verification of chaotic behaviour of maps using validated shadowing. Nonlinearity 12(6), 1683–1698 (1999)

    Article  MathSciNet  Google Scholar 

  56. Arioli, G., Koch, H.: Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation. Nonlinear Anal. 113, 51–70 (2015)

    Article  MathSciNet  Google Scholar 

  57. Ambrosi, D., Arioli, G., Koch, H.: A homoclinic solution for excitation waves on a contractile substratum. SIAM J. Appl. Dyn. Syst. 11(4), 1533–1542 (2012)

    Article  MathSciNet  Google Scholar 

  58. van den Berg, J.B., Deschênes, A., Lessard, J.-P., Mireles James, J.D.: Stationary coexistence of hexagons and rolls via rigorous computations. SIAM J. Appl. Dyn. Syst. 14(2), 942–979 (2015)

    Article  MathSciNet  Google Scholar 

  59. Lessard, J.-P., James, J.D.M., Reinhardt, C.: Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields. J. Dyn. Differ. Equ. 26(2), 267–313 (2014)

    Article  MathSciNet  Google Scholar 

  60. Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity. SIAM J. Appl. Dyn. Syst 6(1), 142–207 (2007). (electronic)

    Article  MathSciNet  Google Scholar 

  61. Haro, À., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical algorithms. Discrete Contin. Dyn. Syst. Ser. B 6(6), 1261–1300 (2006). (electronic)

    Article  MathSciNet  Google Scholar 

  62. Guillamon, A., Huguet, G.: A computational and geometric approach to phase resetting curves and surfaces. SIAM J. Appl. Dyn. Syst. 8(3), 1005–1042 (2009)

    Article  MathSciNet  Google Scholar 

  63. Huguet, G., de la Llave, R.: Computation of limit cycles and their isochrons: fast algorithms and their convergence. SIAM J. Appl. Dyn. Syst. 12(4), 1763–1802 (2013)

    Article  MathSciNet  Google Scholar 

  64. Huguet, G., de la Llave, R., Sire, Y.: Computation of whiskered invariant tori and their associated manifolds: new fast algorithms. Discrete Contin. Dyn. Syst. 32(4), 1309–1353 (2012)

    MathSciNet  MATH  Google Scholar 

  65. Ahlfors, L.V.: Complex analysis. An introduction to the theory of analytic functions of one complex variable. McGraw-Hill Book Company, Inc, New York (1953)

    MATH  Google Scholar 

  66. Breden, M., Lessard, J.P., Mireles James, J.D.: Computation of maximal local (un)stable manifold patches by the parameterization method. Indag. Math. 27(1), 340–367 (2016)

    Article  MathSciNet  Google Scholar 

  67. Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal 45(4), 1398–1424 (2007). (electronic)

    Article  MathSciNet  Google Scholar 

  68. Yamamoto, N.: A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal 35(5), 2004–2013 (1998). (electronic)

    Article  MathSciNet  Google Scholar 

  69. Castelli, R., Lessard, J.-P.: A method to rigorously enclose eigenpairs of complex interval matrices. In: Applications of Mathematics 2013, pp. 21–31. Acad. Sci. Czech Repub. Inst. Math., Prague (2013)

  70. Lazer, A.C., McKenna, P.J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32(4), 537–578 (1990)

    Article  MathSciNet  Google Scholar 

  71. Gazzola, F., Pavani, R.: Blow up oscillating solutions to some nonlinear fourth order differential equations. Nonlinear Anal. 74(17), 6696–6711 (2011)

    Article  MathSciNet  Google Scholar 

  72. Gazzola, F., Pavani, R.: Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal. 207(2), 717–752 (2013)

    Article  MathSciNet  Google Scholar 

  73. Berchio, E., Gazzola, F.: A qualitative explanation of the origin of torsional instability in suspension bridges. Nonlinear Anal. 121, 54–72 (2015)

    Article  MathSciNet  Google Scholar 

  74. Arioli, G., Gazzola, F.: A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge. Appl. Math. Model. 39(2), 901–912 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason D. Mireles James.

A Rigorous Enclosure of the Coefficients for the Suspension Bridge Problem

A Rigorous Enclosure of the Coefficients for the Suspension Bridge Problem

Denote by denote by \(\alpha =(\alpha _1,\alpha _2)\) the multi-indices \(\alpha \in \mathbb {N}^2\). The superscript \(\alpha ^i\) labels different \(\alpha \)’s. Following the scheme proposed in Sect. 3, the rigorous enclosure of the coefficients \(a_\alpha (w)\) of the parameterization with \(2\le |\alpha |\le \tilde{N}\) are computed.

Recalling (48), we aim at solving \(F_{\alpha ,m}^{(j)} =\left( \frac{2 \pi \mathbf{i}m}{2 T} + \alpha \cdot \varLambda \right) a_{\alpha ,m}^{(j)} - \left( f \circ P \right) ^{(j)}_{\alpha ,m}=0\), where

$$\begin{aligned} \left( \begin{array}{ccc} \left( f \circ P \right) ^{(1)}_{\alpha ,m} \\ \left( f \circ P \right) ^{(2)}_{\alpha ,m} \\ \left( f \circ P \right) ^{(3)}_{\alpha ,m} \\ \left( f \circ P \right) ^{(4)}_{\alpha ,m} \end{array}\right) =\left( \begin{array}{ccc} a_{\alpha ,m}^{(2)}\\ a_{\alpha ,m}^{(3)}\\ a_{\alpha ,m}^{(4)}\\ - 120 a_{\alpha ,m}^{(1)} - 154 a_{\alpha ,m}^{(2)} - 71 a_{\alpha ,m}^{(3)} - 14 a_{\alpha ,m}^{(4)} {\displaystyle {\mathop {\sum }_{\begin{array}{c} \alpha ^1+\alpha ^2+\alpha ^3=\alpha \\ \alpha ^i\ge 0 \end{array}}} } \left( a_{\alpha ^1}^{(1)} * a_{\alpha ^2}^{(1)} *a_{\alpha ^3}^{(1)} \right) _m \end{array} \right) , \end{aligned}$$
(84)

with \(2 \le |\alpha | \le \tilde{N}\) and \(m \in \mathbb {Z}\). The derivative of F (with respect to \(a_{\alpha ,m}\), \(|\alpha |\ge 2\)) at the point a acts on an element v as

$$\begin{aligned} \left( DF(a) v\right) _{\alpha ,m}{=}\left( \frac{2 \pi \mathbf{i}m}{2 T} {+} \alpha \cdot \lambda \right) v_{\alpha ,m} {+}\left( \begin{array}{ccc} \displaystyle - v_{\alpha ,m}^{(2)}\\ \displaystyle - v_{\alpha ,m}^{(3)}\\ \displaystyle - v_{\alpha ,m}^{(4)}\\ \displaystyle 120 v_{\alpha ,m}^{(1)} +154 v_{\alpha ,m}^{(2)} +71v_{\alpha ,m}^{(3)}+14v_{\alpha ,m}^{(4)} + 3 (a^2*v)_{\alpha ,m} \end{array} \right) , \end{aligned}$$
(85)

where we used the notation

$$\begin{aligned} a^2_\alpha ={\mathop {\sum }_{\begin{array}{c} \alpha ^1+\alpha ^2=\alpha \\ |\alpha ^i|\ge 0 \end{array}}} a^{(1)}_{\alpha ^1} * a^{(1)}_{\alpha ^2} \quad \text {and} \quad (a^2*v)_{\alpha ,m} = {\mathop {\sum }_{\begin{array}{c} \alpha ^1+\alpha ^2+\alpha ^3=\alpha \\ \alpha ^i \ge 0, |\alpha ^3|\ge 2 \end{array}}} \left( a_{\alpha ^1}^{(1)}* a_{\alpha ^2}^{(1)}*v_{\alpha ^3}^{(1)}\right) _m. \end{aligned}$$

We now choose the operator A and \(A^\dag \). Recall that \(A^\dag \) approximates the derivative \(DF({\bar{a}})\) (where \({\bar{a}}\) is an approximate solution of \(F(a)=0\)) while A approximates the inverse of \(DF({\bar{a}})\). We have some freedom in defining these operators but it is advisable that the composition \(AA^\dag :X\rightarrow X\) acts as the identity out of a certain finite dimensional subspace of X. Arguing as in (69), define a finite dimensional part of \(A^\dag \) as the exact derivative of \(DF^{(M)}({\bar{a}})\), while the action of the derivative on the infinite dimensional complement is only approximated. In (69) we chose to approximate the derivative with the diagonal action of \(\left( \frac{2\pi \mathbf{i}m}{2T}+\alpha \cdot \varLambda \right) \) because this term is growing with m, hence, it is asymptotically dominant. However, besides those terms that are growing, it is advisable to consider in \(A^\dag \) also those terms that are big. In our case the vector field has a cubic nonlinearity and the first few Fourier coefficients \(\gamma _m\) of the 2T-periodic orbit \(\gamma (t)\) are

$$\begin{aligned} \gamma _0=0,\ \gamma _{\pm 2}\approx 0.178\pm 13.34 \mathbf{i},\ \gamma _{\pm 6}=-0.17\pm 0.064\mathbf{i}, \ \gamma _{\pm 1,\pm 3,\pm 4\pm 5}\equiv 0. \end{aligned}$$

It follows that the first few Fourier coefficients of \(a^2_\mathbf{0}\) are the following ( \(\mathbf{0}=(0,0)\)):

$$\begin{aligned} ( a^2_\mathbf{0})_0\approx 356.31,\quad (a^2_\mathbf{0})_{\pm 4}\approx -176.40\pm 9.52\mathbf{i}\quad (a^2_\mathbf{0})_{\pm 1,2,3}\approx 0. \end{aligned}$$

Therefore, the cubic term alone produces contributions in the derivative as big as multiplication by 1100.

We decide to include these contributions (3 times the multiplication by \((a^2_\mathbf{0})_0\), \((a^2_\mathbf{0})_{\pm 4}\)), together with the linear term \(120 v_{\alpha ,m}^{(1)}, 154 v_{\alpha ,m}^{(2)}, 71v_{\alpha ,m}^{(3)} \) in the definition of \(A^\dag \). In practice, define \(A^\dag \) so that

$$\begin{aligned} \left( (A^\dag _{i_1,i_2})_{j_1,j_2} d \right) _m = \left\{ \begin{array}{rl} \displaystyle \left( (DF_{i_1,i_2}^{(M)})_{j_1,j_2} d_F \right) _m, &{} |m| < M,\\ \displaystyle \delta _{i_1,i_2} \delta _{j_1,j_2} \left( \frac{2 \pi \mathbf{i}m}{2 T} + \alpha (i_1) \cdot \varLambda \right) d_m, &{} |m| \ge M, \end{array} \right. \end{aligned}$$
(86)

and for any i ranging on the set of possible \(\alpha \)’s, we augment the action of the operators \((A^\dag _{i,i})_{4,j} \), \(j=1,2,3\) with the multiplication by the infinite dimensional tridiagonal matrix or the diagonal matrix as depicted in Fig. 6 where

$$\begin{aligned} d_0=120+3(a^2_\mathbf{0})_0,\quad d_4=3(a^2_\mathbf{0})_4,\quad d_{-4}=3(a^2_\mathbf{0})_{-4}, \quad f_0=154,\quad g_0=71. \end{aligned}$$

Similarly, we define the operator A as

$$\begin{aligned} \left( (A_{i_1,i_2})_{j_1,j_2} c \right) _m = \left\{ \begin{array}{rl} \displaystyle \left( (A_{i_1,i_2}^{(M)})_{j_1,j_2} c_F \right) _m, &{} |m| < M,\\ \displaystyle \delta _{i_1,i_2} \delta _{j_1,j_2} \left( \frac{1}{\frac{2 \pi \mathbf{i}m}{2 T} + \alpha (i_1) \cdot \varLambda } \right) c_m, &{} |m| \ge M, \end{array}\right. \end{aligned}$$
(87)

and, at first, we augment the action of \((A_{i,i})_{4,j} \), \(j=1,2,3\), for any i ranging on the set of possible \(\alpha \)’s, with the multiplication by the infinite dimensional tridiagonal matrix as depicted in Fig. 7 where

$$\begin{aligned} e_0^{(m)}=-\frac{d_0}{\mu _m^2},\quad e_{-4}^{(m)}=-\frac{d_{-4}}{\mu _{m+4}\mu _m},\quad e_{4}^{(m)}=-\frac{d_{4}}{\mu _{m-4}\mu _m}, \quad h_0^{(m)}=-\frac{f_0}{\mu _m^2},\quad \ell _0^{(m)}=-\frac{g_0}{\mu _m^2} \end{aligned}$$

and

$$\begin{aligned} \mu _m=\frac{2\mathbf{i}\pi }{2T}m+\alpha (i)\cdot \varLambda . \end{aligned}$$
Fig. 6
figure 6

Structure of the components of the operator \(A^\dag _{i,i}\)

Fig. 7
figure 7

Structure of the components of the operator \(A_{i,i}\). The infinite dimensional diagonal and tridiagonal terms are defined so that the composition \(AA^\dag \) acts as the identity out of \(\varPi ^{(M+4)}X\)

Let us now compute the action of \(A^\dag \) on \(v\in X\). The finite dimensional part results in

$$\begin{aligned} \Big ( \left( A^\dag v \right) _\alpha \Big )_F=\left( \begin{array}{c} (DF^{(M)} v)_F^{(1)}\\ (DF^{(M)} v)_F^{(2)}\\ (DF^{(M)} v)_F^{(3)}\\ (DF^{(M)} v)_F^{(4)}+\epsilon \end{array}\right) . \end{aligned}$$

where \(\epsilon \) denotes the multiplication of \(d_4\) and \(d_{-4}\) times \(v^{(1)}_{\alpha ,m}\) where \(m=-M-3,\dots , -M\) and \(m=M,\dots , M+3\) respectively.

Instead, for \(|m|\ge M\)

$$\begin{aligned} \left( A^\dag v \right) _{\alpha ,m} = \left( \begin{array}{c} \mu _mv_{\alpha ,m}^{(1)}\\ \mu _mv_{\alpha ,m}^{(2)}\\ \mu _mv_{\alpha ,m}^{(3)}\\ d_4v_{\alpha ,m-4}^{(1)}+d_0v_{\alpha ,m}^{(1)}+d_{-4}v_{\alpha ,m+4}^{(1)} +f_0v_{\alpha ,m}^{(2)}+g_0v_{\alpha ,m}^{(3)}+\mu _mv_{\alpha ,m}^{(4)}\\ \end{array}\right) . \end{aligned}$$

Then, let us apply the operator A to \(A^\dag (v)\). For any \(\alpha \) and \(|m|\ge M+4\),

$$\begin{aligned}&[A(A^\dag (v))]_{\alpha ,m}\\&\quad {=}\left( \begin{array}{c} \frac{1}{\mu _m}(\mu _mv_{\alpha ,m}^{(1)})\\ \frac{1}{\mu _m}(\mu _mv_{\alpha ,m}^{(2)})\\ \frac{1}{\mu _m}(\mu _mv_{\alpha ,m}^{(3)})\\ e_4^{(m)}(\mu _{m-4}v^{(1)}_{\alpha ,m-4})+e_0^{(m)}(\mu _mv^{(1)}_{\alpha ,m}) +e_{-4}^{(m)}(\mu _{m+4}v^{(1)}_{\alpha ,m+4})+h_0^{(m)}\mu _mv^{(2)}_{\alpha ,m} +\ell _0^{(m)}\mu _mv_{\alpha ,m}^{(3)}\\ +\frac{1}{\mu _m}\Big (d_4v_{\alpha ,m-4}^{(1)}+d_0v_{\alpha ,m}^{(1)} +d_{-4}v_{\alpha ,m+4}^{1}+f_0v_{\alpha ,m}^{(2)}+g_0v_{\alpha ,m}^{(3)} +\mu _mv_{\alpha ,m}^{(4)}\Big )\\ \end{array}\right) . \end{aligned}$$

By definition of \(e_0,e_4,e_{-4},h_0,\ell _0\), we have \([A(A^\dag (v))]_{\alpha ,m}=v_{\alpha ,m}\), that is \(AA^\dag \) acts as the identity on the infinite dimensional subspace \((I-\varPi ^{(M+4)})X\). On the contrary, we can not guarantee that \(AA^\dag \) is close to the identity in the finite dimensional space \(\varPi ^{(M+4)}(X)\), because of the out of diagonal terms. Thus, we compute a numerical inverse of the restriction of \(A^\dag \) on \(\varPi ^{(M+4)}(X)\), and we append the result in the construction of A. In practice, the matrices \(( A^{(M)}_{i_1,i_2})_{j_1,j_2}\) are replaced by slightly larger matrices \(( A^{(M+4)}_{i_1,i_2})_{j_1,j_2}\). In conclusion, the structure of the operator A is the same as the one depicted in Fig. 7 with \(M+4\) instead of M.

The bound \({{\varvec{Z}}}^{(\mathbf{1})}\). As in (75), let \(\tilde{\mathcal {A}}^2_\alpha \) be the matrix with components \((\tilde{\mathcal {A}}^2_{\alpha })(m,n)=({\bar{a}}^2_{\alpha })_{m-n}\). The matrices \({\overline{\varGamma }}(s,t)\) used in the computation of the \(Z^{(1)}\) bound, are of the following form

$$\begin{aligned} \begin{array}{r l l} s_j=1 \qquad &{} s_\alpha =t_\alpha &{} t_j=2\quad {\overline{\varGamma }}(s,t)=- {\tilde{I}}\\ s_j=2 \qquad &{} s_\alpha =t_\alpha &{} t_j=3\quad {\overline{\varGamma }}(s,t)=-{\tilde{I}}\\ s_j=3 \qquad &{} s_\alpha =t_\alpha &{} t_j=4\quad {\overline{\varGamma }}(s,t)=-{\tilde{I}}\\ s_j=4 \qquad &{} s_\alpha =t_\alpha &{} t_j=1\quad {\overline{\varGamma }}(s,t)=3(\tilde{\mathcal {A}}^2_\mathbf{0})^*\\ &{}&{}t_j=4\quad {\overline{\varGamma }}(s,t)=14 {\tilde{I}}\\ &{} s_\alpha >t_\alpha &{} t_j=1\quad {\overline{\varGamma }}(s,t)=3\tilde{\mathcal {A}}^2_{s_\alpha -t_\alpha } \end{array} \end{aligned}$$

where \((\tilde{\mathcal {A}}^2_\mathbf{0})^*\) is the same as \(\tilde{\mathcal {A}}^2_\mathbf{0}\) after replacing \(({\bar{a}}^2_\mathbf{0})_0=({\bar{a}}^2_\mathbf{0})_{\pm 4}=0\). That is one of the consequences of considering the tridiagonal action in \((A^\dag _{i,i})_{4,1}\). The other main consequence is that the linear terms \(120 {\tilde{I}}\), \(154{\tilde{I}}\) and \(71{\tilde{I}}\) vanish.

The bounds \({{\varvec{Z}}}^{(\mathbf{2})}\) and \({{\varvec{Z}}}^{(\mathbf{3})}\). Because of the cubic nonlinearity, besides the \(Z^{(2)}\) bound we also have the \(Z^{(3)}\) bound. Indeed

$$\begin{aligned}&{\mathop {\sum }_{\begin{array}{c} \alpha ^1+\alpha ^2+\alpha ^3=\alpha \\ |\alpha ^1|\ge 0,|\alpha ^2|\ge 0,|\alpha ^3|\ge 2 \end{array}}}\left( {\bar{a}}_{\alpha ^1}^{(1)}+ru_{\alpha ^1}\right) *\left( {\bar{a}}_{\alpha ^2}^{(1)} +ru_{\alpha ^2}\right) *\left( rv_{\alpha ^3}^{(1)}\right) \\&\quad =r{\mathop {\sum }_{\begin{array}{c} \alpha ^1+\alpha ^2=\alpha \\ |\alpha ^1|\ge 0,|\alpha ^2|\ge 2 \end{array}}}({\bar{a}}^2)_{\alpha ^1}*v^{(1)}_{\alpha ^2} +r^2{\mathop {\mathop {\mathop {\sum }\limits _{\alpha ^1+\alpha ^2+\alpha ^3=\alpha }} \limits _{|\alpha ^1|,|\alpha ^2|\ge 0}}\limits _{|\alpha ^3|\ge 2}}\left( {\bar{a}}_{\alpha ^1}^{(1)}*u_{\alpha ^2}+{\bar{a}}_{\alpha ^2}^{(1)}*u_{\alpha ^1}\right) *v_{\alpha ^3}+r^3\\&\quad {\mathop {\sum }_{\begin{array}{c} \alpha ^1+\alpha ^2+\alpha ^3=\alpha \\ |\alpha ^i|\ge 2 \end{array}}} u_{\alpha ^1}*u_{\alpha ^2}*v_{\alpha ^3} \end{aligned}$$

Hence \((Z^{(2)})_\alpha ^{(j)}=(Z^{(3)})_\alpha ^{(j)}=0\), for \(j=1,2,3\), and

$$\begin{aligned} (Z^{(2)})^{(4)}_\alpha =2{\mathop {\sum }_{\begin{array}{c} \alpha ^1+\alpha ^2+\alpha ^3=\alpha \\ |\alpha ^1|\ge 0,|\alpha ^2|,|\alpha ^3|\ge 2 \end{array}}}\Vert {\bar{a}}_{\alpha ^1}^{(1)}\Vert _{1,\nu },\quad (Z^{(3)})_\alpha ^{(4)}={\mathop {\sum }_{\begin{array}{c} \alpha ^1+\alpha ^2+\alpha ^3=\alpha \\ |\alpha ^i| \ge 2 \end{array}}}1 \end{aligned}$$

1.1 A.1 Extra Coefficients, \(\tilde{{{\varvec{N}}}}<|{\varvec{\alpha }}|\le {{\varvec{N}}}\)

Once the enclosure of the function \(a_\alpha (w)\) for \(|\alpha |<\tilde{N}\) is computed, following the approach of Sect. 3.3, the coefficients \(a_\alpha (w)\) for \(\tilde{N}< |\alpha |\le N\) can be computed layer by layer. In the case under analysis, the value of N required by the proof is pretty big. As already stated, we do not compute all the coefficients one-by-one for any \(|\alpha |\) up to N, rather for \(|\alpha |\) big enough a uniform bound is employed. More precisely, for a choice of \(N^*\), \(3\tilde{N}<N^*<N\), the functions \(a_\alpha \) are one-by-one enclosed for any \(\tilde{N}<|\alpha |\le N^*\). Then uniform bounds provide the enclosure for all the remaining \(a_\alpha \).

The case \(|{\varvec{\alpha }}|\le {{\varvec{N}}}^{*}\). In the unknown \(a_\alpha \), the function \(F_\alpha \) is the same as in (84). The nonlinearity is decomposed into

$$\begin{aligned} \sum _{\alpha ^1+\alpha ^2+\alpha ^3=\alpha } a^{(1)}_{\alpha ^1}*a^{(1)}_{\alpha ^2}*a^{(1)}_{\alpha ^3} ={\mathop {\sum }_{\begin{array}{c} \alpha ^1+\alpha ^2+\alpha ^3=\alpha \\ |\alpha ^{i}|<|\alpha | \end{array}}}a^{(1)}_{\alpha ^1}*a^{(1)}_{\alpha ^2}*a^{(1)}_{\alpha ^3} +3a_\alpha ^{(1)}*(a^2_\mathbf{0}). \end{aligned}$$

Since \({\bar{a}}={\bar{a}}_\alpha =0\), it follows that

$$\begin{aligned} (F({\bar{a}}))_\alpha =\left( 0,0,0,{\mathop {\sum }_{\begin{array}{c} \alpha ^1+\alpha ^2+\alpha ^3=\alpha \\ |\alpha ^i|<|\alpha | \end{array}}}\left( a_{\alpha ^1}^{(1)} * a_{\alpha ^2}^{(1)} *a_{\alpha ^3}^{(1)} \right) \right) ^T \end{aligned}$$

The definition of \({{\varvec{A}}}_{{\varvec{\alpha }},{\varvec{\alpha }}}\). Let us first write \(A^\dag _{\alpha ,\alpha }\) explicitly as

$$\begin{aligned} \left( (A^\dag _{\alpha ,\alpha })_{j_1,j_2} d \right) _m = \left\{ \begin{array}{rl} \displaystyle \left( \left( DF_{\alpha ,\alpha }^{(M)}\right) _{j_1,j_2} d_F \right) _m, &{} |m| < M,\\ \displaystyle \delta _{j_1,j_2} \left( \frac{2 \pi \mathbf{i}m}{2 T} + \alpha \cdot \varLambda \right) d_m, &{} |m| \ge M, \end{array} \right. \end{aligned}$$
(88)

and, as done before, we augment the operators \((A^\dag _{\alpha ,\alpha })_{4,j_2}\), \(j_2=1,2,3\) with the tridiagonal and diagonal operators depicted in Fig/. 6. Here \(DF_{\alpha ,\alpha }^{(M)}\) is the derivative of \(F_\alpha ^{(M)}\) with respect to \(a_\alpha ^{(M)}\) and it is given by

$$\begin{aligned} DF_{\alpha ,\alpha }^{(M)}=\left( \begin{array}{cccc} \mu _\alpha ^{(M)} &{}-I^{(M)} &{} 0 &{}0\\ 0 &{}\mu _\alpha ^{(M)} &{}-I^{(M)} &{} 0 \\ 0&{}0&{}\mu _\alpha ^{(M)} &{}-I^{(M)} \\ 120I^{(m)}+3({\mathcal {A}}^2_\mathbf{0})^{(M)}&{}154 I^{(M)}&{}71 I^{(M)}&{} \mu _\alpha ^{(M)}+14I^{(M)} \end{array} \right) , \end{aligned}$$

where \(\mu _\alpha ^{(M)}\) is the \((2M-1)\times (2M-1)\) diagonal matrix with \(\frac{2 \pi \mathbf{i}m}{2 T} + \alpha \cdot \varLambda \) on the diagonal, \(|m|<M\), \(I^{(M)}\) is the \((2M-1)\times (2M-1)\) identity matrix and \(({\mathcal {A}}^2_\mathbf{0})^{(M)}\) is the \((2M-1)\times (2M-1)\) matrix representing the action of the convolution \(a^2_\mathbf{0}*x\) on \(X^{(M)}\).

The operator \(A_{\alpha ,\alpha }\) is of the same shape as done previously

$$\begin{aligned} \left( (A_{\alpha ,\alpha })_{j_1,j_2} c \right) _m = \left\{ \begin{array}{rl} \displaystyle \left( \left( A_{\alpha ,\alpha }^{(M+4)}\right) _{j_1,j_2} c_F \right) _m, &{} |m| < M+4,\\ \displaystyle \delta _{j_1,j_2} \left( \frac{1}{\frac{2 \pi \mathbf{i}m}{2 T} + \alpha \cdot \varLambda } \right) c_m, &{} |m| \ge M+4, \end{array} \right. \end{aligned}$$
(89)

with the tridiagonal and diagonal elements of Fig. 7 appended to \((A_{\alpha ,\alpha })_{4,j2}\), \(j_2=1,2,3\). As before, we increase M to \(M+4\) to ensure that \(AA^\dag =I\) on \(I-\varPi ^{(M+4)}X\) and \(A_{\alpha ,\alpha }^{(M+4)}\) is a numerical inverse of \((A^\dag _{\alpha ,\alpha })^{(M+4)}\).

Construction of the bounds \({{\varvec{Y}}}\) and \({{\varvec{Z}}}({{\varvec{r}}})\).

$$\begin{aligned} Y_\alpha \ge |||A_{\alpha ,\alpha }||| \left[ 0,0,0,\left\| {\mathop {\sum }_{\begin{array}{c} \alpha ^1+\alpha ^2+\alpha ^3=\alpha \\ |\alpha ^i|<|\alpha | \end{array}}}\left( a_{\alpha ^1}^{(1)} * a_{\alpha ^2}^{(1)} *a_{\alpha ^3}^{(1)} \right) \right\| _\nu \right] ^T. \end{aligned}$$

For any \(\alpha \), let \(R_\alpha =I-A_{\alpha ,\alpha }^{(M+4)}(A_{\alpha ,\alpha }^\dag )^{(M+4)}\) the residual that occurs when multiplying \(A^\dag \) with the approximative inverse A and define

$$\begin{aligned} \left( Z^{(0)}_\alpha \right) ^{(j)}\ge \sum _{j_1}||| (R_\alpha )_{j,j_1}|||. \end{aligned}$$

More precisely, for any \(j=1,\dots ,4\) we have the \(Z^{(1)}\) bound

$$\begin{aligned} \begin{array}{rl} Z^{(1)}_{\alpha ,j}=&{}|||(A_{\alpha ,\alpha })_{j,1}{\tilde{I}} |||+|||(A_{\alpha ,\alpha })_{j,2}{\tilde{I}} |||+|||(A_{\alpha ,\alpha })_{j,3}{\tilde{I}} |||+|||(A_{\alpha ,\alpha })_{j,4} 14{\tilde{I}} |||\\ &{}+3|||(A_{\alpha ,\alpha })_{j,4}(\tilde{\mathcal {A}}^2_\mathbf{0})^* |||+3|||(A_{\alpha ,\alpha })_{j,4}|||\epsilon _\mathbf{0,2}\\ \end{array} \end{aligned}$$
(90)

where \(\Vert (\bar{a}^2)_0-(a^2)_0\Vert _\nu \le \epsilon _\mathbf{{0},2}\).

Uniform bound for \({{\varvec{N}}}^*<|{\varvec{\alpha }}|\le {{\varvec{N}}}\). It remains to compute rigorous enclosures for \(a_\alpha \) for all \(N^*<|\alpha |\le N\). The idea is to solve the system \(\{ F_\alpha =0\}_{N^*<|\alpha |\le N}\) in the unknowns \(\{a_\alpha \}_{N^*<|\alpha |\le N}\). The operators \(A^\dag \) and A are constructed as diagonal operators in \(\alpha \) so that any polynomial \(p_\alpha \) depends on the operator \(A_{\alpha ,\alpha }\). Also, the “numerical approximation” is taken to be zero for all \(\alpha \). In order to define a unique polynomial that provides the enclosure for any \(\alpha \), uniform bounds on \(Y_\alpha \), \(Z_\alpha \) are sought, together with a uniform bound of \(|||A_{\alpha ,\alpha }|||\). Let us briefly discuss how to define a uniform bound for \(|||A_{\alpha , \alpha }|||\). The crucial point is to bound \(|||A_{\alpha ,\alpha }^{M+4}|||\), where \(A_{\alpha ,\alpha }^{(M+4)}\) is an approximate inverse of \((A^\dag _{\alpha ,\alpha })^{(M+4)}\). For the system (83), we have

$$\begin{aligned} \left( A^\dag _{\alpha ,\alpha }\right) ^{(M+4)}=\left( \begin{array}{cccc} \mu _\alpha ^{(M+4)} &{}-I^{(M)} &{} 0 &{}0\\ 0 &{}\mu _\alpha ^{(M+4)} &{}-I^{(M)} &{} 0 \\ 0&{}0&{}\mu _\alpha ^{(M+4)} &{}-I^{(M)} \\ C_{4,1}&{}C_{4,2}&{}C_{4,3}&{} \mu _\alpha ^{(M+4)}+14I^{(M)} \end{array}\right) , \end{aligned}$$

where \(C_{4,1}\) is the \(2(M+4)-1 \times 2(M+4)-1\) matrix obtained by enlarging \(120I^{(M)}+3({\mathcal {A}}^2_\mathbf{0})^{(M)}\) with the terms on the 3 diagonals \(d_0, d_4, d_{-4}\), \(C_{4,2}=154 I^{(M+4)}\), \(C_{4,3}=71 I^{(M+4)}\).

Write \((A^\dag _{\alpha ,\alpha })^{(M+4)}=P+B_\alpha \) where

$$\begin{aligned} P=\left( \begin{array}{cccc} 0 &{}-I^{(M)} &{} 0 &{}0\\ 0 &{}0 &{}-I^{(M)} &{} 0 \\ 0&{}0 &{}0 &{}-I^{(M)} \\ 0&{}0&{}0&{} 14I^{(M)} \end{array}\right) \quad \text {and} \quad B_\alpha =\left( \begin{array}{cccc} \mu _\alpha ^{(M+4)} &{}0 &{} 0 &{}0\\ 0 &{}\mu _\alpha ^{(M+4)} &{}0 &{} 0 \\ 0&{}0&{}\mu _\alpha ^{(M+4)} &{}0 \\ C_{4,1}&{}C_{4,2}&{}C_{4,3}&{} \mu _\alpha ^{(M+4)} \end{array}\right) . \end{aligned}$$

Now, we define \(A_{\alpha ,\alpha }^{(M+4)}\) as

$$\begin{aligned} A_{\alpha ,\alpha }^{(M+4)}={\tilde{B}}_\alpha -{\tilde{B}}_\alpha P{\tilde{B}}_\alpha , \end{aligned}$$

where

$$\begin{aligned} {\tilde{B}}_\alpha =\left( \begin{array}{cccc} \mu _\alpha ^{-1} &{}0 &{} 0 &{}0\\ 0 &{}\mu _\alpha ^{-1} &{}0 &{} 0 \\ 0&{}0&{}\mu _\alpha ^{-1} &{}0 \\ -\mu _\alpha ^{-1}C_{4,1}\mu _\alpha ^{-1}&{}-\mu _\alpha ^{-1}C_{4,2}\mu _\alpha ^{-1}&{}-\mu _\alpha ^{-1}C_{4,3}\mu _\alpha ^{-1}&{} \mu _\alpha ^{-1} \end{array}\right) ,\quad \mu _\alpha ^{-1}=\left( \mu _\alpha ^{(M+4)}\right) ^{-1}. \end{aligned}$$

It follows that \(B_\alpha {\tilde{B}}_\alpha =I\) and that \(I-A_{\alpha ,\alpha }^{(M+4)}(A_{\alpha ,\alpha }^\dag )^{(M+4)}={\tilde{B}}_\alpha P{\tilde{B}}_\alpha P\). For the definition of \(Z^0\), a uniform bound of the latest product is needed for any \(|\alpha |>N^*\). Since \({\tilde{B}}_\alpha \) is component wise decreasing in \(|\alpha |\), that is \(| {\tilde{B}}_{\alpha '} | <\max | {\tilde{B}}_{\alpha } |\) if \(|\alpha '|=|\alpha |+1\), a bound is obtained by computing the expression for all the \(\alpha \)’s with \(|\alpha |=N^*\).

Similarly, a bound for \(|||A_{\alpha ,\alpha }^{(M+4)}|||\) is computed, as explained in the next remark.

Remark 13

Direct computation provides

$$\begin{aligned}&A_{\alpha ,\alpha }^{(M+4)}={\tilde{B}}_\alpha -{\tilde{B}}_\alpha P{\tilde{B}}_\alpha \\&\quad =\left( \begin{array}{cccc} \mu _\alpha ^{-1} &{} \mu _\alpha ^{-1}I^{(M)} \mu _\alpha ^{-1} &{} 0 &{}0\\ 0&{}\mu _\alpha ^{-1} &{}\mu _\alpha ^{-1}I^{(M)} \mu _\alpha ^{-1} &{} 0\\ -\mu _\alpha ^{-1} I^{(M)} \mu _\alpha ^{-1}C_{4,1}\mu _\alpha ^{-1} &{}-\mu _\alpha ^{-1} I^{(M)} \mu _\alpha ^{-1}C_{4,2}\mu _\alpha ^{-1}&{} \mu _\alpha ^{-1}-\mu _\alpha ^{-1} I^{(M)} \mu _\alpha ^{-1}C_{4,3}\mu _\alpha ^{-1}&{}\mu _\alpha ^{-1}I^{(M)} \mu _\alpha ^{-1} \\ X_1 &{} X_2 &{} X_3 &{} X_4 \end{array}\right) \end{aligned}$$

where

$$\begin{aligned} X_1&=-\left( I-\mu _\alpha ^{-1}C_{4,3}\mu _\alpha ^{-1}I^{(M)} -14\mu _\alpha ^{-1}I^{(M)}\right) \mu _\alpha ^{-1}C_{4,1}\mu _\alpha ^{-1}\\ X_2&=-\mu _\alpha ^{-1}C_{4,1}\mu _\alpha ^{-1}I^{(M)}\mu _\alpha ^{-1} -\left( I-\mu _\alpha ^{-1}C_{4,3}\mu _\alpha ^{-1}I^{(M)}-14\mu _\alpha ^{-1} I^{(M)}\right) \mu _\alpha ^{-1}C_{4,2}\mu _\alpha ^{-1}\\ X_3&=-\mu _\alpha ^{-1}C_{4,2}\mu _\alpha ^{-1}I^{(M)}\mu _\alpha ^{-1} -\left( I-\mu _\alpha ^{-1}C_{4,3}\mu _\alpha ^{-1}I^{(M)}-14\mu _\alpha ^{-1} I^{(M)}\right) \mu _\alpha ^{-1}C_{4,3}\mu _\alpha ^{-1}\\ X_4&=-\mu _\alpha ^{-1}C_{4,3}\mu _\alpha ^{-1}I^{(M)}\mu _\alpha ^{-1} +\mu _\alpha ^{-1}-14\mu _\alpha ^{-1}I^{(M)}\mu _\alpha ^{-1} \end{aligned}$$

For any \(\alpha \) the operator norm of the operator \(\mu _\alpha ^{-1}\) is given by

$$\begin{aligned} |||\mu _\alpha ^{-1}|||=\max _m\left| \frac{1}{2\pi im/{2T}+\alpha \cdot \varLambda }\right| =\left| \frac{1}{\alpha \cdot \varLambda }\right| =\frac{1}{\alpha \cdot |\varLambda |} \end{aligned}$$

Clearly, if \(|\alpha '|=N+1\), \(\alpha '\cdot |\varLambda |> \min _{|\alpha |=N}\alpha \cdot |\varLambda |\). Then

$$\begin{aligned} |||\mu _{\alpha '}^{-1}|||<\max _{|\alpha |=N} |||\mu _\alpha ^{-1}|||. \end{aligned}$$

According to this remark, the knowledge of \(|||\mu _\alpha ^{-1}|||\) with \(|\alpha |=N^*\) provides a uniform bound \(|||\mu _{\alpha '}^{-1}|||\) for any \(|\alpha '|>N^*\). So we have a uniform bound for the operator norm of each of the entries of \(A_{\alpha ,\alpha }^{(M+4)}\) that is valid for all \(\alpha \) with \(|\alpha |>N^*\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castelli, R., Lessard, JP. & James, J.D.M. Parameterization of Invariant Manifolds for Periodic Orbits (II): A Posteriori Analysis and Computer Assisted Error Bounds. J Dyn Diff Equat 30, 1525–1581 (2018). https://doi.org/10.1007/s10884-017-9609-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9609-z

Keywords

Navigation