Skip to main content
Log in

Limit Cycles of Piecewise Smooth Differential Equations on Two Dimensional Torus

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study the limit cycles of some classes of piecewise smooth vector fields defined in the two dimensional torus. The piecewise smooth vector fields that we consider are composed by linear, Ricatti with constant coefficients and perturbations of these one, which are given in (3). Considering these piecewise smooth vector fields we characterize the global dynamics, studying the upper bound of number of limit cycles, the existence of non-trivial recurrence and a continuum of periodic orbits. We also present a family of piecewise smooth vector fields that posses a finite number of fold points and, for this family we prove that for any 2k number of limit cycles there exists a piecewise smooth vector fields in this family that presents k number of limit cycles and prove that some classes of piecewise smooth vector fields presents a non-trivial recurrence or a continuum of periodic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adler, R., Kitchens, B., Tresser, C.: Dynamics of non-ergodic piecewise affine maps of the torus. Ergod. Theory Dynam. Syst. 21(4), 959–999 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ashwin, P., Fu, X., Lin, C.: On planar piecewise and two-torus parabolic maps. Int. J. Bifurc. Chaos Appl. Sci. Eng. 19(7), 2383–2390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berezin, I.S., Shidkov, N.P.: Computing methods. Vols. I, II. Translated by O. M. Blunn; translation edited by A. D. Booth. Pergamon Press, Oxford-Edinburgh-New York-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1965. Vol. I: xxxiv+464 pp. $ 15.00; Vol. II, (1965)

  4. Chernov, N.I.: Ergodic and statistical properties of piecewise linear hyperbolic automorphisms of the \(2\)-torus. J. Stat. Phys. 69(1–2), 111–134 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth dynamical systems: Theory and applications. Applied Mathematical Sciences, vol. 163. Springer, London (2008)

    MATH  Google Scholar 

  6. Filippov, A.F.: Differential equations with discontinuous righthand sides, volume 18 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, (1988). Translated from the Russian

  7. Karlin, S., Studden, W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics. Pure and Applied Mathematics, vol. XV. Interscience Publishers Wiley, New York (1966)

    MATH  Google Scholar 

  8. Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcations of nonsmooth systems: a survey. Phys. D 241(22), 1826–1844 (2012)

    Article  MathSciNet  Google Scholar 

  9. Novaes, D.D., Torregrosa, J.A.: On extended chebyshev systems with positive accuracy. J. Math. Anal. Appl. 448, 171–186 (2017)

  10. Orlov, Y.V.: Discontinuous Systems: Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions. Communications and Control Engineering Series. Springer, London (2009)

    MATH  Google Scholar 

  11. Poincaré, H.: Mémoire sur les courbes d éfinies par une équation differentielle i. J. Math. Pures Appl. 7, 375–422 (1881)

    MATH  Google Scholar 

  12. Poincaré, H.: Mémoire sur les courbes d éfinies par une équation differentielle ii. J. Math. Pures Appl. 8, 251–296 (1882)

    MATH  Google Scholar 

  13. Poincaré, H.: Sur les courbes définies par les équation differentielles iii. J. Math. Pures Appl. 1, 167–244 (1885)

    MATH  Google Scholar 

  14. Poincaré, H.: Sur les courbes définies par les équation differentielles iv. J. Math. Pures Appl. 2, 155–217 (1886)

    Google Scholar 

  15. Teixeira, M.A.: Perturbation theory for non-smooth systems. In: Mathematics of Complexity and Dynamical Systems, Vols. 1–3, pp. 1325–1336. Springer, New York, (2012)

  16. Tkachenko, V.I.: On the existence of a piecewise-smooth invariant torus of an impulse system. In: Methods for investigating differential and functional-differential equations (Russian), pp. 91–96. Inst. Math. Acad. Nauk Ukrain. SSR, Kiev (1990)

  17. Tonon, D.J., Martins, R.M.: Chaos in piecewise smooth vector fields on two dimensional torus and sphere. arXiv:1601.05670

Download references

Acknowledgements

The first author is partially supported by the MINECO grants MTM2016-77278-P and MTM2013-40998-P, an AGAUR grant number 2014SGR-568, the grants FP7-PEOPLE-2012-IRSES 318999, and a CAPES grant number 88881.030454/ 2013-01 from the program CSF-PVE. D. J. Tonon is supported by grant#2012/10 26 7000 803, Goiás Research Foundation (FAPEG), PROCAD/CAPES grant 88881.0 68462/2014-01 and by CNPq-Brazil. R. M. Martins is supported by FAPESP-Brazil project 2015/06903-8. The authors would like to thank Matheus Manzatto for the help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durval José Tonon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llibre, J., Martins, R.M. & Tonon, D.J. Limit Cycles of Piecewise Smooth Differential Equations on Two Dimensional Torus. J Dyn Diff Equat 30, 1011–1027 (2018). https://doi.org/10.1007/s10884-017-9584-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9584-4

Keywords

Mathematics Subject Classification

Navigation