Skip to main content
Log in

Hopf Bifurcation in Symmetric Networks of Coupled Oscillators with Hysteresis

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The standard approach to study symmetric Hopf bifurcation phenomenon is based on the usage of the equivariant singularity theory developed by M. Golubitsky et al. In this paper, we present the equivariant degree theory based method which is complementary to the equivariant singularity approach. Our method allows systematic study of symmetric Hopf bifurcation problems in non-smooth/non-generic equivariant settings. The exposition is focused on a network of eight identical van der Pol oscillators with hysteresis memory, which are coupled in a cube-like configuration leading to S 4-equivariance. The hysteresis memory is the source of non-smoothness and of the presence of an infinite dimensional phase space without local linear structure. Symmetric properties and multiplicity of bifurcating branches of periodic solutions are discussed in the context showing a direct link between the physical properties and the equivariant topology underlying this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonyan, S.A.: Equivariant generalization of Dugundji’s theorem. Mat. Zametki 38:608–616 (in Russian) (1985). English translation in 1985, Math. Notes 38, 844–848

    Google Scholar 

  2. Appelbe B., Rachinskii D., Zhezherun A.: Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis. Phys. B 403, 301–304 (2008)

    Article  Google Scholar 

  3. Appelbe B., Flynn D., McNamara H., O’Kane P., Pimenov A., Pokrovskii A., Rachinskii D., Zhezherun A.: Rate-independent hysteresis in terrestrial hydrology. IEEE Control Syst. Mag. 29, 44–69 (2009)

    Article  Google Scholar 

  4. Ashwin P., Podvigina O.: Hopf bifurcation with rotational symmetry of the cube and instability of ABC flow. Proc. R. Soc. A 459, 1801–1827 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aubry S.: Exact models with a complete Devil’s staircase. J. Phys. C: Solid State Phys. 16, 2497–2508 (1983)

    Article  Google Scholar 

  6. Balanov Z., Krawcewicz W.: Symmetric Hopf bifurcation: twisted degree approach. In: Battelli, F., Feckan, M. (eds) Handbook of Differential Equations, Ordinary Differential Equations, vol. 4, pp. 1–131. Elsevier, Amsterdam (2008)

    Google Scholar 

  7. Balanov Z., Krawcewicz W., Ruan H.: Applied equivariant degree, part I: an axiomatic approach to primary degree. Discr. Continuous Dyn. Syst. A 15, 983–1016 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balanov Z., Krawcewicz W., Steinlein H.: Applied Equivariant Degree, AIMS Series on Differential Equations and Dynamical Systems, vol. 1. AIMS, Springfield (2006)

    Google Scholar 

  9. Balanov Z., Krawcewicz W., Rybicki S., Steinlein H.: A short treatise on the equivariant degree theory and its applications, a short treatise on the equivariant degree theory and its applications (on the occasion of S. Smale’s 80-th birthday. J. Fixed Point Theory Appl. 8, 1–74 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barut A.O., Ra¸czka R.: Theory of Group Representations and Applications. World Scientific Publishing Co., Singapore (1986)

    MATH  Google Scholar 

  11. Bredon G.E.: Introduction to Compact Transformation Groups. Academic Press, New York (1972)

    MATH  Google Scholar 

  12. Brokate M., Collings I., Pokrovskii A., Stagnitti F.: Asymptotically stable oscillations in systems with hysteresis nonlinearities. Z. Anal. Anw. 19, 469–487 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Brokate M., Sprekels J.: Hysteresis and Phase Transitions. Springer, New York (1996)

    Book  MATH  Google Scholar 

  14. Brokate M., Pokrovskii A., Rachinskii D., Rasskazov O.: Differential equations with hysteresis via a canonical example. In: Bertotti, G., Mayergoyz , I. (eds) The Science of Hysteresis, vol. 1, pp. 127–291. Academic Press, New York (2005)

    Google Scholar 

  15. Brokate M., Pokrovskii A.V., Rachinskii D.I.: Asymptotic stability of continual sets of periodic solutions to systems with hysteresis. J. Math. Anal. Appl. 319, 94–109 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colombo A., di Bernardo M., Hogan S.J., Kowalczyk P.: Complex dynamics in a hysteretic relay feedback system with delay. J. Nonlinear Sci. 17, 85–108 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cross R., Grinfeld M., Lamba H., Seaman T.: Stylized facts from a threshold-based heterogeneous agent model. The Eur. Phys. J. B 57, 213–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dahmen K.: Nonlinear dynamics: universal clues in noisy skews. Nat. Phys. 1, 13–14 (2005)

    Article  Google Scholar 

  19. Dahmen K., Ben-Zion Y.: The physics of jerky motion in slowly driven magnetic and earthquake fault systems. In: Marchetti, C., Meyers, R.A. (eds) Enciclopedia of Complexity and Systems Science, Springer, New York (2009)

    Google Scholar 

  20. Dahmen K.A., Ben-Zion Y., Uhl J.T.: A micromechanical model for deformation in solids and with universal predictions for stress strain curves and slip avalances. Phys. Rev. Lett. 102, 175501 (2009)

    Article  Google Scholar 

  21. Dancer E.N.: A new degree for S 1-invariant gradient mappings and applications. Ann. Inst. H. Poincaré Anal. Non Lineaire 2, 1–18 (1985)

    MathSciNet  Google Scholar 

  22. Dancer E.N., Toland J.F.: The index change and global bifurcation for flows with first integrals. Proc. Lond. Math. Soc. 66, 539–567 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Davino D., Giustiniani A., Visone C.: Compensation and control of two-inputs systems with hysteresis. J. Phys. Conf. Ser. 268, 012005 (2011)

    Article  Google Scholar 

  24. Diamond P., Rachinskii D.I., Yumagulov M.G.: Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity. Nonlinear Anal. 42, 1017–1031 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Diamond P., Kuznetsov N.A., Rachinskii D.I.: On the Hopf bifurcation in control systems with asymptotically homogeneous at infinity bounded nonlinearities. J. Differ. Equ. 175, 1–26 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dias A.P.S., Rodrigues A.: Hopf bifurcation with S N -symmetry. Nonlinearity 27, 627–666 (2009)

    Article  MathSciNet  Google Scholar 

  27. Eleuteri M., Kopfova J., Krejči P.: On a model with hysteresis arising in magnetohydrodynamics. Physica B 403, 448–450 (2008)

    Article  Google Scholar 

  28. Fiedler B.: Global Bifurcation of Periodic Solutions with Symmetry, Lecture Notes in Mathematics, vol. 1309. Springer, New York (1988)

    Google Scholar 

  29. Field M.J.: Dynamics and Symmetry, ICP Advanced Texts in Mathematics, vol. 3. Imperial College Press, London (2007)

    Google Scholar 

  30. Field M.J., Swift J.W.: Hopf bifurcation and Hopf fibration. Nonlinearity 7, 385–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fuller F.B.: An index of fixed point type for periodic orbits. Am. J. Math. 89, 133–148 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gleeson J.P.: Bond percolation on a class of clustered random networks. Phys. Rev. E 80, 036107 (2009)

    Article  Google Scholar 

  33. Godsil, C.: (2004). Association Schemes http://quoll/unwaterloo.ca/pstuff/assoc.eps

  34. Goicoechea J., Ortin J.: Hysteresis and return-point memory in deterministic cellular automata. Phys. Rev. Lett. 72, 2203 (1994)

    Article  Google Scholar 

  35. Golubitsky M., Stewart I.N.: The Symmetry Perspective. Berlin, Birkhäuser (2002)

    Book  MATH  Google Scholar 

  36. Golubitsky M., Schaeffer D.G., Stewart I.N.: Singularities and Groups in Bifurcation Theory, vol. 2. Springer, New York (1988)

    Book  Google Scholar 

  37. Guo S., Lamb J.S.W.: Equivariiant Hopf bifurcation for neutral functional differential equations. Proc. Am. Math. Soc. 136, 2031–2041 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Guyer R.A., McCall K.R.: Capillary condensation, invasion percolation, hysteresis, and discrete memory. Phys. Rev. B. 54, 18–21 (1996)

    Article  Google Scholar 

  39. Iudovĭck V.I.: The onset of auto-oscillations in a fluid. Prikl. Mat. Mek. 35, 638–655 (1971)

    Google Scholar 

  40. Iyer, R., Tan, X.: (eds.) Hysteresis. IEEE Control Systems Magazine 1 (2009)

  41. Ize, J., Vignoli, A.: Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, vol. 8, W. de Gruyter (2003)

  42. Kawakubo K.: The Theory of Transformation Groups. The Clarendon Press, New York (1991)

    MATH  Google Scholar 

  43. Kirillov A.A.: Elements of the Theory of Representations, Grundlehren der Mathematischen Wissenschaften, vol. 220. Springer, Berlin (1976)

    Google Scholar 

  44. Krasnosel’skii M.A.: Positive Solutions of Operator Equations. P. Noordhoff Ltd., Groningen (1964)

    Google Scholar 

  45. Krasnosel’skii M., Pokrovskii A.: Systems with Hysteresis. Springer, New York (1989)

    Book  MATH  Google Scholar 

  46. Krasnosel’skii A.M., Rachinskii D.I.: On a bifurcation governed by hysteresis nonlinearity. Nonlinear Differ. Equ. Appl. 9, 93–115 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Krasnosel’skii A.M., Rachinskii D.I.: On continuous branches of cycles in systems with non-linearizable nonlinearities. Doklady Math. 67, 153–158 (2003)

    MATH  Google Scholar 

  48. Krasnosel’skii A.M., Kuznetsov N.A., Rachinskii D.I.: Nonlinear Hopf bifurcations. Doklady Math. 61, 389–392 (2000)

    Google Scholar 

  49. Krasnosel’skii A.M., Rachinskii D.I.: On continua of cycles in systems with hysteresis. Doklady Math. 63, 339–344 (2001)

    Google Scholar 

  50. Krasnosel’skii A.M., Rachinskii D.I.: On existence of cycles in autonomous systems. Doklady Math. 65, 344–349 (2002)

    MATH  Google Scholar 

  51. Krasnosel’skii A.M., Kuznetsov N.A., Rachinskii D.I.: On resonant differential equations with unbounded nonlinearities. Z. Anal. Anwendungen 21, 639–668 (2002)

    MathSciNet  Google Scholar 

  52. Krawcewicz W., Wu J.: Theory of Degrees with Applications to Bifurcations and Differential Equations, Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1997)

    Google Scholar 

  53. Krejci P.: On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case. Appl. Math. 34, 364–374 (1989)

    MathSciNet  MATH  Google Scholar 

  54. Krejči P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo (1996)

    MATH  Google Scholar 

  55. Krejci P.: Resonance in Preisach systems. Appl. Math. 45, 439–468 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Krejci P., Sprekels J., Zheng S.: Asymptotic behaviour for a phase-field system with hysteresis. J. Differ. Equ. 175, 88–107 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  57. Krejci P., O’Kane P., Pokrovskii A., Rachinskii D.: Stability results for a soil model with singular hysteretic hydrology. J. Phys. Conf. Ser. 268, 012016 (2010)

    Article  Google Scholar 

  58. Kuhnen K.: Compensation of parameter-dependent complex hysteretic actuator nonlinearities in smart material systems. J. Intel. Mater. Syst. Struct. 19, 1411–1424 (2008)

    Article  Google Scholar 

  59. Kushkuley A., Balanov Z.: Geometric Methods in Degree Theory for Equivariant Maps, Lecture Notes in Mathematics, vol. 1632. Springer, Berlin-Heidelberg (1996)

    Google Scholar 

  60. Kuznetsov Yu. A.: Elements of Applied Bifurcation Theory. Springer, Berlin (1995)

    MATH  Google Scholar 

  61. Kuznetsov N.A., Rachinskii D., Zhezherun A.: Hopf bifurcation in systems with Preisach operator. Doklady Math. 78, 705–709 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lamba H., Seaman T.: Market statistics of a psychology-based heterogeneous agent model. Int. J. Theor. Appl. Finance 11, 717–737 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. Logemann H., Ryan E.P., Shvartsman I.: A class of differential-delay systems with hysteresis: asymptotic behaviour of solutions. Nonlinear Anal. Theory Methods Appl. 69, 363–391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Mayergoyz I.D.: Mathematical Models of Hysteresis. Springer, New York (1991)

    Book  MATH  Google Scholar 

  65. Mayergoyz, I.D., Bertotti, G. (eds): The Science of Hysteresis, 3-volume set. Elsevier, Academic Press (2005)

    Google Scholar 

  66. Mehta A., Barker G.C.: Bistability and hysteresis in tilted sandpiles. Europhys. Lett. 56, 626–632 (2001)

    Article  Google Scholar 

  67. Pimenov A., Rachinskii D.: Linear stability analysis of systems with Preisach memory. Discr. Continuous Dyn. Syst. B 11, 997–1018 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Pokrovskii A., Power T., Rachinskii D., Zhezherun A.: Stability by linear approximation of ODEs with Preisach operator. J. Phys. Conf. Ser. 55, 171–190 (2006)

    Article  Google Scholar 

  69. Rachinskii D.I.: Asymptotic stability of large-amplitude oscillations in systems with hysteresis. Nonlinear Differ. Equ. Appl. 6, 267–288 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  70. Rachinskii D.I., Schneider K.R.: Dynamic Hopf bifurcations generated by nonlinear terms. J. Differ. Equ. 210, 65–86 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  71. Rezaei-Zare A., Sanaye-Pasand M., Mohseni H., Farhangi Sh., Iravani R.: Analysis of ferroresonance modes in power transformers using Preisach-type hysteretic magnetizing inductance. IEEE Trans. Power Deliv. 22, 919–929 (2007)

    Article  Google Scholar 

  72. Sethna J.P., Dahmen K., Kartha S., Krumhansl J.A., Robetrs B.W., Shore J.D.: Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transitions. Phys. Rev Lett. 70, 3347 (1993)

    Article  Google Scholar 

  73. Sethna J.P., Dahmen K., Myers C.R.: Crackling noise. Nature 410, 242–250 (2001)

    Article  Google Scholar 

  74. Sethna J.P., Dahmen K.A., Perkovic O.: Random-field Ising models of hysteresis. In: Bertotti, G., Mayergoyz, I. (eds) The Science of Hysteresis, vol 2, pp. 107–168. Elsevier, Amsterdam (2005)

    Google Scholar 

  75. tom Dieck T.: Transformation Groups. W. de Gruyter, Berlin (1987)

    Book  MATH  Google Scholar 

  76. Turing A.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. B. 237, 37–72 (1952)

    Article  Google Scholar 

  77. Visintin A.: Differential Models of Hysteresis. Springer, Berlin (1994)

    MATH  Google Scholar 

  78. Visone C.: Hysteresis modelling and compensation for smart sensors and actuators. J. Phys. Conf. Ser. 138, 012028 (2008)

    Article  Google Scholar 

  79. Watts D.J.: A simple model of global cascades on random networks. Proc. Nat. Acad Sci. USA 99, 5766–5771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  80. Wielandt H.: Finite Permutation Groups. Academic Press, New York (1964)

    MATH  Google Scholar 

  81. Wu J.: Symmetric functional-differential equations and neural networks with memory. Trans. Am. Math. Soc. 350, 4799–4838 (1998)

    Article  MATH  Google Scholar 

  82. Yoshida K.: The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J. 12, 321–348 (1982)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Balanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balanov, Z., Krawcewicz, W., Rachinskii, D. et al. Hopf Bifurcation in Symmetric Networks of Coupled Oscillators with Hysteresis. J Dyn Diff Equat 24, 713–759 (2012). https://doi.org/10.1007/s10884-012-9271-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-012-9271-4

Keywords

Navigation