Stability of Solitary Waves for the Generalized Higher-Order Boussinesq Equation

  • Amin Esfahani
  • Steven Levandosky


This work studies the stability of solitary waves of a class of sixth-order Boussinesq equations.


Boussinesq equation Solitary waves Stability 

Mathematics Subject Classifications (2000)

35Q35 76B55 76U05 76B25 35B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angulo J.: On the instability of solitary waves solutions of the generalized Benjamin equation. Adv. Differ. Equ. 8, 55–82 (2003)MATHGoogle Scholar
  2. 2.
    Angulo J.: On the instability of solitary wave solutions for fifth-order water wave models. Electron. J. Differ. Equ. 2003, 1–18 (2003)Google Scholar
  3. 3.
    Bona J.L., Sachs R.: Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Commun. Math. Phys. 118, 15–29 (1988)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Boussinesq J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide continu dans 21 ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55–108 (1872)Google Scholar
  5. 5.
    Christov C.I., Maugin G.A., Velarde M.G.: Well-posed Boussinesq paradigm with purely spatial higher-order derivatives. Phys. Rev. E 54, 3621–3638 (1996)CrossRefGoogle Scholar
  6. 6.
    Christov C.I., Maugin G.A., Porubov A.V.: On Boussinesq’s paradigm in nonlinear wave propagation. C.R. Mecanique 335, 521–535 (2007)MATHGoogle Scholar
  7. 7.
    Daripa P.: Higher-order Boussinesq equations for two-way propagation of shallow water waves. Eur. J. Mech. B 25, 1008–1021 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Daripa P., Dash R.K.: Studies of Capillary Ripples in a Sixth-Order Boussinesq Equation Arising in Water Waves, pp. 285–291. SIAM, Philadelphia (2000)Google Scholar
  9. 9.
    Daripa P., Dash R.K.: Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation. Math. Comput. Simul. 55, 393–405 (2001)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Daripa P., Dash R.K.: Analytical and numerical studies of a singularly perturbed Boussinesq equation. Appl. Math. Comput. 126, 1–30 (2002)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Daripa P., Dash R.K.: A class of model equations for bi-directional propagation of capillary-gravity waves. Int. J. Eng. Sci. 41, 201–218 (2003)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Daripa P., Hua W.: A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: filtering and regularization techniques. Appl. Math. Comput. 101, 159–207 (1999)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Dey B., Khare A., Kumar C.N.: Stationary solitons of the fifth order KdV-type equations and their stabilization. Phys. Lett. A 223, 449–452 (1996)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.: Tables of Integral Transforms, vol. 2. McGraw-Hill, New York (1954)Google Scholar
  15. 15.
    Esfahani A., Farah L.G.: Local well-posedness for the sixth-order Boussinesq equation. J. Math. Anal. Appl. 385, 230–242 (2012)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Esfahani, A., Farah, L.G., Wang, H.: Global existence and blow-up for the generalized sixth-order Boussinesq equation. Nonlinear Anal. TMA, To appear (2012)Google Scholar
  17. 17.
    Esfahani, A., Levandosky, S.: Solitary waves of the rotation-generalized Benjamin-Ono equation. Preprint (available at arXiv:math/1105.5369) (2011)Google Scholar
  18. 18.
    Falk F., Laedke E., Spatschek K.: Stability of solitary-wave pulses in shape-memory alloys. Phys. Rev. B 36, 3031–3041 (1987)CrossRefGoogle Scholar
  19. 19.
    Feng B.F., Kawahara T., Mitsui T.: Solitary-wave propagation and interactions for a sixth-order generalized Boussinesq equation. Int. J. Math. Math. Sci. 9, 1435–1448 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gonçalves Ribeiro J.: Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field. Ann. Inst. H. Poincaré, Phys. Théor. 54, 403–433 (1991)MATHGoogle Scholar
  21. 21.
    Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I and II. J. Funct. Anal. 74, 160–197 (1990); 94, 308–348 (1987)Google Scholar
  22. 22.
    Kamenov O.Y.: Exact periodic solutions of the sixth-order generalized Boussinesq equation. J. Phys. A 42, 375501 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Karageorgis P., McKenna P.J.: The existence of ground states for fourth-order wave equations. Nonlinear Anal. 73, 367–373 (2010)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Levandosky S.: A stability analysis of fifth-order water wave models. Physica D 125, 222–240 (1999)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Levandosky S.: Stability of solitary waves of a fifth-order water wave model. Physica D 227, 162–172 (2007)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Lin Z.: Stability and instability of traveling solitonic bubbles. Adv. Differ. Equ. 7, 897–918 (2002)MATHGoogle Scholar
  27. 27.
    Lin Z.: Instability of nonlinear dispersive solitary waves. J. Funct. Anal. 255, 1191–1224 (2008)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Liu Y.: Instability of solitary waves for generalized Boussinesq equations. J. Dyn. Differ. Equ. 5, 537–558 (1993)MATHCrossRefGoogle Scholar
  29. 29.
    Liu Y.: Instability and blow-up of solutions to a generalized Boussinesq equation. SIAM J. Math. Anal. 26, 1527–1545 (1995)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Liu Y., Tom M.M.: Blow-up and instability of a regularized long-wave-KP equation. Differ. Integral Equ. 19, 1131–1152 (2003)MathSciNetGoogle Scholar
  31. 31.
    Maugin G.A.: Nonlinear Waves in Elastic Crystals. Oxford Mathematical Monographs Series. Oxford University Press, Oxford (1999)Google Scholar
  32. 32.
    Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)MATHCrossRefGoogle Scholar
  33. 33.
    Pelinovsky D.E., Stepanyants Y.A.: Convergence of Petviashvili’s iteration method for numerical approximation of stationary solutions of nonlinear wave equations. SIAM J. Numer. Anal. 42, 1110–1127 (2004)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Segal I.: Non-linear semi-groups. Ann. Math. 78, 339–364 (1963)MATHCrossRefGoogle Scholar
  35. 35.
    Stein E.M.: Oscillatory integrals in Fourier analysis. In: Stein, E.M. (ed) Beijing Lectures in Harmonic Analysis, pp. 307–355. Princeton Press, Princeton (1986)Google Scholar
  36. 36.
    Zakharov V.: On stochastization of one-dimensional chains of nonlinear oscillators. Sov. Phys. JETP 38, 108–110 (1974)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Mathematics and Computer ScienceDamghan UniversityDamghanIran
  2. 2.Mathematics and Computer Science DepartmentCollege of the Holy CrossWorcesterUSA

Personalised recommendations