Multiple Periodic Solutions of an Equation with State-Dependent Delay



Given \({N \in \mathbb N}\) we prove the existence, for parameter values in a certain range, of N distinct periodic solutions of a state-dependent delay equation studied by Walther (Differ Integral Equ 15:923–944, 2002).


State-dependent delay Periodic solution Fixed point index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    an der Heiden U., Walther H.O.: Existence of chaos in control systems with delayed feedback. J. Differ. Equa. 47, 273–295 (1983)MATHCrossRefGoogle Scholar
  2. 2.
    Alt W.: Periodic solutions of some autonomous differential equations with variable time delay. In: Peitgen, H.O., Walther, H.O. (eds) Functional Differential Equations and Approximation of Fixed Points, Bonn, Germany 1978, pp. 16–31. Springer, New York (1978)Google Scholar
  3. 3.
    Arino O. et al.: Existence of periodic solutions for delay differential equations with state dependent delay. J. Differ. Equa. 144, 263–301 (1998)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Diekmann O. et al.: Delay Equations: Funtional-, Complex-, and Nonlinear Analysis. Springer-Verlag, New York (1995)Google Scholar
  5. 5.
    Granas A., Dugundji J.: Fixed Point Theory. Springer-Verlag, New York (2003)MATHGoogle Scholar
  6. 6.
    Han F., Wang Q.: Existence of multiple positive periodic solutions for differential equation with state-Eependent Eelays. J. Math. Anal. Appl. 324, 908–920 (2006)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ivanov A., Losson J.: Stable rapidly oscillating solutions in delay equations with negative feedback. Differ. Integral Equa. 12, 811–832 (1999)MathSciNetMATHGoogle Scholar
  8. 8.
    Kennedy B.: Periodic solutions of delay equations with several fixed delays. Differ. Integral Equa. 22, 679–724 (2009)Google Scholar
  9. 9.
    Kuang Y., Smith H.L.: Slowly oscillating periodic solutions of autonomous state-dependent delay equations, nonlinear analysis, theory. Methods Appl. 19, 855–872 (1992)MathSciNetMATHGoogle Scholar
  10. 10.
    Magal P., Arino O.: Existence of periodic solutions for a state dependent delay differential equation. J. Differ. Equa. 165, 61–95 (2000)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Mallet-Paret J., Nussbaum R.D.: Boundary layer phenomena for differential-delay equations with state-dependent time lags, I. Arch. Ration. Mech. Anal. 120, 99–146 (1992)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Mallet-Paret J., Nussbaum R.D.: Boundary layer phenomena for differential-delay equations with state dependent time lags: II. J. Reine Angew. Math. 477, 127–197 (1996)MathSciNetGoogle Scholar
  13. 13.
    Mallet-Paret J., Nussbaum R.D.: Boundary layer phenomena for differential-delay equations with state-eependent time lags: III. J. Differ. Equa. 189, 640–692 (2003)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Mallet-Paret J. et al.: Periodic solutions for functional differential equations with multiple state-dependent time lags. Topol. Methods Nonlinear Anal. 3, 101–162 (1994)MathSciNetMATHGoogle Scholar
  15. 15.
    Mallet-Paret, J., Walther, H.O.: Rapid oscillations are rare in scalar systems governed by monotone negative feedback with a time lag (preprint)Google Scholar
  16. 16.
    Nussbaum R.D.: Periodic solutions of some nonlinear autonomous functional differential equations. Annali di Matematica Pura ed Applicata 101, 263–306 (1974)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Nussbaum R.D.: The Fixed Point Index and Some Applications. University of Montreal Press, Montreal (1985)MATHGoogle Scholar
  18. 18.
    Ouifki R., Hbid M.L.: Periodic solutions for a class of functional differential equations with state-dependent delay close to zero. Math. Models Methods Appl. Sci. 13, 807–841 (2003)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Peters H.: Chaotic behavior of nonlinear differential-delay equations. Nonlinear Anal. 7, 1315–1334 (1983)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Siegberg H.W.: Chaotic behavior of a class of differential-delay equations. Annali di Matematica Pura ed Applicata 138, 15–33 (1984)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Stoffer D.: Delay equations with radpidly oscillating stable periodic solutions. J. Dyn. Differ. Equa. 20, 201–238 (2008)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Walther H.O.: Homoclinic solution and chaos in \({\dot{x}(t) = f(x(t-1))}\). Nonlinear Anal. Theory Methods Appl. 5, 775–788 (1981)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Walther H.O.: Stable periodic motion of a system with state-dependent delay. Differ. Integral Equa. 15, 923–944 (2002)MathSciNetMATHGoogle Scholar
  24. 24.
    Walther H.O.: Stable periodic motion of a system using echo for position control. J. Dyn. Differ. Equa. 15, 143–223 (2003)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Walther H.O.: A periodic solution of a differential equation with state-dependent delay. J. Differ. Equa. 244, 1910–1945 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsGettysburg CollegeGettysburgUSA

Personalised recommendations