Advertisement

Multiple Periodic Solutions of an Equation with State-Dependent Delay

  • Benjamin Kennedy
Article

Abstract

Given \({N \in \mathbb N}\) we prove the existence, for parameter values in a certain range, of N distinct periodic solutions of a state-dependent delay equation studied by Walther (Differ Integral Equ 15:923–944, 2002).

Keywords

State-dependent delay Periodic solution Fixed point index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    an der Heiden U., Walther H.O.: Existence of chaos in control systems with delayed feedback. J. Differ. Equa. 47, 273–295 (1983)MATHCrossRefGoogle Scholar
  2. 2.
    Alt W.: Periodic solutions of some autonomous differential equations with variable time delay. In: Peitgen, H.O., Walther, H.O. (eds) Functional Differential Equations and Approximation of Fixed Points, Bonn, Germany 1978, pp. 16–31. Springer, New York (1978)Google Scholar
  3. 3.
    Arino O. et al.: Existence of periodic solutions for delay differential equations with state dependent delay. J. Differ. Equa. 144, 263–301 (1998)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Diekmann O. et al.: Delay Equations: Funtional-, Complex-, and Nonlinear Analysis. Springer-Verlag, New York (1995)Google Scholar
  5. 5.
    Granas A., Dugundji J.: Fixed Point Theory. Springer-Verlag, New York (2003)MATHGoogle Scholar
  6. 6.
    Han F., Wang Q.: Existence of multiple positive periodic solutions for differential equation with state-Eependent Eelays. J. Math. Anal. Appl. 324, 908–920 (2006)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ivanov A., Losson J.: Stable rapidly oscillating solutions in delay equations with negative feedback. Differ. Integral Equa. 12, 811–832 (1999)MathSciNetMATHGoogle Scholar
  8. 8.
    Kennedy B.: Periodic solutions of delay equations with several fixed delays. Differ. Integral Equa. 22, 679–724 (2009)Google Scholar
  9. 9.
    Kuang Y., Smith H.L.: Slowly oscillating periodic solutions of autonomous state-dependent delay equations, nonlinear analysis, theory. Methods Appl. 19, 855–872 (1992)MathSciNetMATHGoogle Scholar
  10. 10.
    Magal P., Arino O.: Existence of periodic solutions for a state dependent delay differential equation. J. Differ. Equa. 165, 61–95 (2000)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Mallet-Paret J., Nussbaum R.D.: Boundary layer phenomena for differential-delay equations with state-dependent time lags, I. Arch. Ration. Mech. Anal. 120, 99–146 (1992)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Mallet-Paret J., Nussbaum R.D.: Boundary layer phenomena for differential-delay equations with state dependent time lags: II. J. Reine Angew. Math. 477, 127–197 (1996)MathSciNetGoogle Scholar
  13. 13.
    Mallet-Paret J., Nussbaum R.D.: Boundary layer phenomena for differential-delay equations with state-eependent time lags: III. J. Differ. Equa. 189, 640–692 (2003)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Mallet-Paret J. et al.: Periodic solutions for functional differential equations with multiple state-dependent time lags. Topol. Methods Nonlinear Anal. 3, 101–162 (1994)MathSciNetMATHGoogle Scholar
  15. 15.
    Mallet-Paret, J., Walther, H.O.: Rapid oscillations are rare in scalar systems governed by monotone negative feedback with a time lag (preprint)Google Scholar
  16. 16.
    Nussbaum R.D.: Periodic solutions of some nonlinear autonomous functional differential equations. Annali di Matematica Pura ed Applicata 101, 263–306 (1974)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Nussbaum R.D.: The Fixed Point Index and Some Applications. University of Montreal Press, Montreal (1985)MATHGoogle Scholar
  18. 18.
    Ouifki R., Hbid M.L.: Periodic solutions for a class of functional differential equations with state-dependent delay close to zero. Math. Models Methods Appl. Sci. 13, 807–841 (2003)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Peters H.: Chaotic behavior of nonlinear differential-delay equations. Nonlinear Anal. 7, 1315–1334 (1983)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Siegberg H.W.: Chaotic behavior of a class of differential-delay equations. Annali di Matematica Pura ed Applicata 138, 15–33 (1984)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Stoffer D.: Delay equations with radpidly oscillating stable periodic solutions. J. Dyn. Differ. Equa. 20, 201–238 (2008)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Walther H.O.: Homoclinic solution and chaos in \({\dot{x}(t) = f(x(t-1))}\). Nonlinear Anal. Theory Methods Appl. 5, 775–788 (1981)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Walther H.O.: Stable periodic motion of a system with state-dependent delay. Differ. Integral Equa. 15, 923–944 (2002)MathSciNetMATHGoogle Scholar
  24. 24.
    Walther H.O.: Stable periodic motion of a system using echo for position control. J. Dyn. Differ. Equa. 15, 143–223 (2003)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Walther H.O.: A periodic solution of a differential equation with state-dependent delay. J. Differ. Equa. 244, 1910–1945 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsGettysburg CollegeGettysburgUSA

Personalised recommendations