Advertisement

Journal of Dynamics and Differential Equations

, Volume 22, Issue 4, pp 697–722 | Cite as

Exponential Dichotomy for Asymptotically Hyperbolic Two-Dimensional Linear Systems

  • Weishi Liu
  • Erik S. Van Vleck
Article

Abstract

We consider the problem of determining the existence of exponential dichotomy for a class of linear nonautonomous ODEs. An approach is explored that combines numerical techniques with rigorous perturbation theory. It is applicable to a given problem within the class we consider. Numerical results illustrate the utility of the approach.

Mathematics Subject Classification (2000)

35A 65L 

Keywords

Exponential dichotomy Sacker–Sell spectrum QR methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adrianova, L.Ya.: Introduction to Linear Systems of Differential Equations, Translations of Mathematical Monographs, vol. 146. AMS, Providence, RI (1995)Google Scholar
  2. 2.
    Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M.: Lyapunov exponents for smooth dynamical systems and for hamiltonian systems: a method for computing all of them. Part 1: theory. Meccanica 15, 9–20 (1980)MATHCrossRefGoogle Scholar
  3. 3.
    Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M.: Lyapunov exponents for smooth dynamical systems and for hamiltonian systems: a method for computing all of them. Part 2: numerical applications. Meccanica 15, 21–30 (1980)CrossRefGoogle Scholar
  4. 4.
    Beyn W.J., Lorenz J.: Stability of traveling waves: dichotomies and eigenvalue conditions on finite intervals. Numer. Funct. Anal. Opt. 20, 201–244 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Broer H., Simo C.: Resonance tongues in Hill’s equations: a geometric approach. J. Differ. Equ. 166, 290–327 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bylov B.F., Izobov N.A.: Necessary and sufficient conditions for stability of characteristic exponents of a linear system. Differ. Uravn. 5, 1794–1903 (1969)MATHMathSciNetGoogle Scholar
  7. 7.
    Chicone C., Latushkin Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Mathematical Surveys and Monographs, 70. American Mathematical Society, Providence, RI (1999)Google Scholar
  8. 8.
    Chow S.-N., Leiva H.: Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces. J. Differ. Equ. 120, 429–477 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chow S.-N., Liu W., Yi Y.: Center manifolds for smooth invariant manifolds. Trans. Am. Math. Soc. 352, 5179–5211 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chow S.-N., Lu K., Mallet-Paret J.: Floquet bundles for scalar parabolic equations. Arch. Rational Mech. Anal. 129, 245–304 (1995)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Coddington E.A., Levinson N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)MATHGoogle Scholar
  12. 12.
    Coomes B.A., Kocak H., Palmer K.J.: Homoclinic shadowing. J. Dyn. Diff. Eqn. 17, 175–215 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Coppel W.A.: Dichotomies in Stability Theory, Lecture Notes in Mathematics 629. Springer-Verlag, Berlin (1978)Google Scholar
  14. 14.
    Dieci L., Elia C., Van Vleck E.S.: Exponential dichotomy on the real line: SVD and QR methods. J. Differ. Equ. 248, 287–308 (2010)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dieci L., Van Vleck E.S.: Computation of orthonormal factors for fundamental solution matrices. Numer. Math. 83, 599–620 (1999)MATHMathSciNetGoogle Scholar
  16. 16.
    Dieci L., Van Vleck E.S.: Lyapunov spectral intervals: theory and computation. SIAM J. Numer. Anal. 40, 516–542 (2003)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Dieci L., Van Vleck E.S.: On the error in computing Lyapunov exponents by QR methods. Numer. Math. 101, 619–642 (2005)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dieci L., Van Vleck E.S.: Perturbation theory for approximation of Lyapunov exponents by QR methods. J. Dyn. Diff. Eqn. 18, 815–840 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dieci L., Van Vleck E.S.: Lyapunov and Sacker–Sell spectral intervals. J. Dynam. Diff. Eqn. 19, 263–295 (2007)MathSciNetGoogle Scholar
  20. 20.
    Dieci L., Van Vleck E.S.: On the error in QR integration. SIAM J. Numer. Anal. 46, 1166–1189 (2008)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Diliberto, S.P.: On systems of ordinary differential equations. In: Contributions to the Theory of Nonlinear Oscillations (Ann. of Math. Studies 20), pp. 1–38. Princeton Univ. Press, Princeton (1950)Google Scholar
  22. 22.
    Fenichel N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hale J.K.: Ordinary Differential Equations. Krieger, Malabar (1980)MATHGoogle Scholar
  24. 24.
    Hartman P.: Ordinary Differential Equations. Birkhauser, Boston (1982)MATHGoogle Scholar
  25. 25.
    Henry, D.: Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, iv+348 pp. Springer-Verlag, Berlin-New York (1981)Google Scholar
  26. 26.
    Hirsch M., Pugh C., Shub M.: Invariant Manifolds. Lect. Notes in Math. 583. Springer-Verlag, New York (1976)Google Scholar
  27. 27.
    Johnson R.A.: The Oseledec and Sacker–Sell spectra for almost periodic linear systems: an example. Proc. Am. Math. Soc. 99, 261–267 (1987)MATHGoogle Scholar
  28. 28.
    Johnson R.A., Palmer K.J., Sell G.: Ergodic properties of linear dynamical systems. SIAM J. Math. Anal. 18, 1–33 (1987)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kantorovich L.V., Akilov G.P.: Functional Analysis. Pergamon, Oxford (1982)MATHGoogle Scholar
  30. 30.
    Lyapunov A.: Problém Géneral de la Stabilité du Mouvement, Annals of Mathematics Studies 17. Princeton University Press, Princeton (1947)Google Scholar
  31. 31.
    Lyapunov A.: Problém géneral de la stabilité du mouvement. Int. J. Control 53, 531–773 (1992)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Magnus, W., Winkler, S.: Hill’s Equation, viii+127 pp. Interscience Tracts in Pure and Applied Mathematics, No. 20 Interscience Publishers John Wiley & Sons, New York–London–Sydney (1966)Google Scholar
  33. 33.
    Millionshchikov V.M.: Systems with integral division are everywhere dense in the set of all linear systems of differential equations. Differ. Uravn. 5, 1167–1170 (1969)MATHGoogle Scholar
  34. 34.
    Millionshchikov V.M.: Structurally stable properties of linear systems of differential equations. Differ. Uravn. 5, 1775–1784 (1969)MATHGoogle Scholar
  35. 35.
    Oseledec V.I.: A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems (Russian). Trudy Moskov. Mat. Ob. 19, 179–210 (1968)MathSciNetGoogle Scholar
  36. 36.
    Palmer K.J.: Exponential dichotomy, integral separation and diagonalizability of linear systems of ordinary differential equations. J. Differ. Equ. 43, 184–203 (1982)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Palmer K.J.: Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations. J. Differ. Equ. 43, 184–203 (1982)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Palmer K.J.: Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55, 225–256 (1984)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Palmer K.J.: Exponential dichotomies and Fredholm operators. Proc. Am. Math. Soc. 104, 149–156 (1988)MATHMathSciNetGoogle Scholar
  40. 40.
    Perron O.: Die ordnungszahlen linearer differentialgleichungssysteme. Math. Zeits. 31, 748–766 (1930)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Pliss V.A., Sell G.R.: Robustness of exponential dichotomies in infinite-dimensional dynamical systems. J. Dynam. Diff. Eqn. 11, 471–513 (1999)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Sacker R.J., Sell G.R.: Existence of dichotomies and invariant splittings for linear differential systems. I. J. Differ. Equ. 15, 429–458 (1974)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Sacker R.J., Sell G.R.: Existence of dichotomies and invariant splittings for linear differential systems. II. J. Differ. Equ. 22, 478–496 (1976)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Sacker R.J., Sell G.R.: Existence of dichotomies and invariant splittings for linear differential systems. III. J. Differ. Equ. 22, 497–522 (1976)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Sacker R.J., Sell G.R.: A spectral theory for linear differential systems. J. Differ. Equ. 7, 320–358 (1978)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Sacker R.J., Sell G.R.: The spectrum of an invariant manifold. J. Differ. Equ. 38, 135–160 (1980)MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Sacker R.J., Sell G.R.: Dichotomies for linear evolutionary equations in Banach spaces. J. Differ. Equ. 113, 17–67 (1994)MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Sell G.R., You Y.: Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York (2002)Google Scholar
  49. 49.
    Sandstede, B.: Stability of Traveling Waves. In: Handbook of Dynamical Systems, vol. 2, pp. 983–1055 (2002)Google Scholar
  50. 50.
    Sandstede B., Scheel A.: Absolute and convective instabilities of waves on unbounded and large bounded domains. Physica D 145, 233–277 (2000)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Thieme H.R.: Asymptotically autonomous differential equations in the plane. Rocky Mount. J. Math. 24, 351–380 (1994)MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Van Vleck E.S.: On the error in the product QR decomposition. SIAM J. Matrix Anal. Appl. 31, 1775–1791 (2010)CrossRefGoogle Scholar
  53. 53.
    Wolf A., Swift J.B., Swinney H.L., Vastano J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KansasLawrenceUSA

Personalised recommendations