Birkhoffian Systems in Infinite Dimensional Manifolds

  • Waldyr M. Oliva
  • Gláucio Terra


We generalize the theory of Kobayashi and Oliva (On the Birkhoff Approach to Classical Mechanics. Resenhas do Instituto de Matemática e Estatística da Universidade de São Paulo, 2003) to infinite dimensional Banach manifolds with a view towards applications in partial differential equations.


Birkhoffian systems Inverse problem of Lagrangian mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birkhoff, G.D.: Dynamical Systems, vol. 9. Colloquium Publications, American Mathematical Society, Providence, RI (1966)Google Scholar
  2. 2.
    Chernoff P.R., Marsden J.E.: Properties of Infinite Dimensional Hamiltonian Systems, no. 425 in Lecture Notes in Mathematics. Springer, Berlin, New York (1974)Google Scholar
  3. 3.
    Gutkin D.: Calcul des variations en dimension infinie. Comptes Rendus de l’Académie des Sciences 293, 615–618 (1981)MATHMathSciNetGoogle Scholar
  4. 4.
    Gutkin, D.: Espace des Jets et Calcul des Variations en Dimension Infinie, vol. 3, p. 61. Publications De L’Institut De Recherche Mathématique Avancée, Strasbourg (1981)Google Scholar
  5. 5.
    Ionescu D.: A geometric birkhoffian formalism for nonlinear RLC networks. J. Geom. Phys. 56, 2545–2572 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ionescu D., Scheurle J.: Birkhoffian formulation of the dynamics of LC circuits. Z. Angew. Math. Phys. 58, 155–208 (2007)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kobayashi, M.H., Oliva, W.M.: On the Birkhoff Approach to Classical Mechanics, vol. 6, pp. 1–71. Resenhas do Instituto de Matemática e Estatística da Universidade de Sáo Paulo (2003)Google Scholar
  8. 8.
    Takens F.: A global version of the inverse problem of the calculus of variations. J. Differ. Geom. 14, 543–562 (1979)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Instituto Superior Técnico, ISR and Departamento de Matemática, Centro de Análise Matemática, Geometria e Sistemas DinâmicosLisbonPortugal
  2. 2.Instituto de Matemática e Estatística, Departamento de MatemáticaUniversidade de São PauloSão PauloBrazil

Personalised recommendations