Heteroclinic Connection of Periodic Solutions of Delay Differential Equations

  • Melanie Rupflin


For a certain class of delay equations with piecewise constant nonlinearities we prove the existence of a rapidly oscillating stable periodic solution and a rapidly oscillating unstable periodic solution. Introducing an appropriate Poincaré map, the dynamics of the system may essentially be reduced to a two dimensional map, the periodic solutions being represented by a stable and a hyperbolic fixed point. We show that the two dimensional map admits a one dimensional invariant manifold containing the two fixed points. It follows that the delay equations under consideration admit a one parameter family of rapidly oscillating heteroclinic solutions connecting the rapidly oscillating unstable periodic solution with the rapidly oscillating stable periodic solution.


Delay differential equations Periodic solutions Heteroclinic connection 

Mathematics Subject Classification (2000)

34K17 34K19 


  1. 1.
    Aschwanden A., Schulze-Halberg A., Stoffer D.: Stable periodic solutions for delay equations. Discrete Contin. Dyn. Syst. 14(4), 721–236 (2006)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Ivanov A.F., Losson J.: Stable rapidly oscillating solutions in delay differential equations with negative feedback. Diff. Integral Equat. 13, 811–832 (1999)MathSciNetGoogle Scholar
  3. 3.
    Krisztin, T., Walther, H.-O., Wu, J.: Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback. Fields Institute Monographs, vol. 11. American Mathematical Society, Providence, RI (1999)Google Scholar
  4. 4.
    Mallet-Paret, J., Walther, H.-O.: Rapid oscillations are rare in scalar systems governed by monotone negative feedback with a time delay. Preprint (1994)Google Scholar
  5. 5.
    Nipp, K., Stoffer, D.: Invariant manifolds. In preparationGoogle Scholar
  6. 6.
    Rupflin, M.: Existenz schnellschwingender periodischer Lösungen bei steifen Differentialgleichungen mit konstanter Verzögerung. Diploma Thesis (2006). Accessed 8 Aug 2008
  7. 7.
    Stoffer, D.: Delay equations with rapidly oscillating stable periodic solutions. J. Dynam. Diff. Equat. 20(1), 201–238 (2008)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departement MathematikETH ZürichZürichSwitzerland

Personalised recommendations