Homoclinic Trajectories in Discontinuous Systems

  • Flaviano Battelli
  • Michal Fečkan

We study bifurcations of bounded solutions from homoclinic orbits for time-perturbed discontinuous systems. Functional analytic method is used. An illustrative example of a periodically perturbed piecewise linear differential equation in \(\mathbb{R}^3\) is presented.


Homoclinic solutions discontinuous systems 

AMS Subject Classifications

34C23 34C37 37G20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Awrejcewicz, J., M. Fečkan and Olejnik, P. (2006). Bifurcations of planar sliding homoclinics. Math. Problems Eng., 1–13.Google Scholar
  2. 2.
    Battelli, F., Fečkan, M. (2002). Some remarks on the Melnikov function. Elect. J. Differential Equations, 1–29.Google Scholar
  3. 3.
    Battelli F., Lazzari C. (1990). Exponential dichotomies, heteroclinic orbits, and Melnikov functions. J. Differential Equations 86, 342–366MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brogliato B. (1996). Nonsmooth Impact Mechanics, Lecture Notes in Control and Information Sciences 220. Springer, BerlinGoogle Scholar
  5. 5.
    Chua L.O., Komuro M., Matsumoto T. (1986). The double scroll family. IEEE Trans. CAS 33, 1073–1118Google Scholar
  6. 6.
    Coppel, W. A. (1978). Dichotomies in Stability Theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, New York.Google Scholar
  7. 7.
    Gruendler J. (1995). Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations. J. Differential Equations 122, 1–26MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Guckenheimer J., Holmes P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer–Verlag, New YorkMATHGoogle Scholar
  9. 9.
    Kukučka P. (2007). Jumps of the fundamental solution matrix in discontinuous systems and applications. Nonlinear Analysis Th. Meth. Appl. 66, 2529–2546CrossRefGoogle Scholar
  10. 10.
    Kukučka P. (2007). Melnikov method for discontinuous planar systems. Nonlinear Analysis Th. Meth. Appl. 66, 2698–2719CrossRefGoogle Scholar
  11. 11.
    Kunze, M., and Küpper, T. (2001). Non-smooth dynamical systems: an overview, Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems, Springer, Berlin, 431–452.Google Scholar
  12. 12.
    Kuznetsov Yu. A., Rinaldi S., Gragnani A. (2003). One-parametric bifurcations in planar Filippov systems. Int. J. Bif. Chaos 13, 2157–2188CrossRefGoogle Scholar
  13. 13.
    Leine R.I., Van Campen D.H., Van de Vrande B.L. (2000). Bifurcations in nonlinear discontinuous systems. Nonlinear Dynamics 23, 105–164MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Llibre J., Ponce E., Teruel A.E. (2007). Horseshoes near homoclinic orbits for piecewise linear differential systems in \(\mathbb{R}^3\) . Int. J. Bif. Chaos 17, 1171–1184CrossRefMathSciNetGoogle Scholar
  15. 15.
    Palmer K.J. (1984). Exponential dichotomies and transversal homoclinic points. J. Differential Equations 55, 225–256MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rudin, W. (1974). Real and Complex Analysis, McGraw-Hill, Inc., New York.Google Scholar
  17. 17.
    Zou, Y. K., and Küpper, T. (2004). Melnikov method and detection of chaos for non-smooth systems (preprint).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Dipartimento di Scienze MatematicheUniversità Politecnicà delle MarcheAnconaItaly
  2. 2.Department of Mathematical Analysis and Numerical MathematicsComenius UniversityBratislavaSlovakia

Personalised recommendations