Journal of Dynamics and Differential Equations

, Volume 19, Issue 4, pp 915–933 | Cite as

Sharp Estimates of Bounded Solutions to Some Second-order Forced Dissipative Equations

  • Alain Haraux


second-order equation bounded solution 


A l’aide d’inégalités différentielles, on établit une estimation proche de l’optimalité pour la norme dans \(L^\infty({\mathbb{R}},V)\) de l’unique solution bornée de u′′ + cu′ +  Auf(t) lorsque AA * ≥  λ I est un opérateur borné ou non sur un espace de Hilbert réel H, VD(A 1/2) et λ, c sont des constantes positives, tandis que \(f\in L^\infty({\mathbb{R}}, H) \) .

By using differential inequalities, a close-to-optimal \(L^\infty({\mathbb{R}},V)\) bound of the unique bounded solution of u′′ + cu′ +  Auf(t) is obtained whenever AA * ≥  λ I is a bounded or unbounded linear operator on a real Hilbert space H, VD(A 1/2) and λ, c are positive constants, while \(f\in L^\infty({\mathbb{R}}, H) \) .

AMS Classification Numbers

34C15 34C25 34C27 34D05 34D030 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso J. M., Mawhin J., Ortega R. (1999). Bounded solutions of second order semilinear evolution equations and applications to the telegraph equation. J. Math. Pures Appl. 78:49–63MATHMathSciNetGoogle Scholar
  2. 2.
    Cartwright M. L., Littlewood J. E. (1947). On nonlinear differential equations of the second order. Ann. Math. 48:472–494CrossRefMathSciNetGoogle Scholar
  3. 3.
    Chow S. N., Hale J. K., Mallet-Paret J. (1980). An example of bifurcation to homoclinic orbits. J.D.E. 37:351–373MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hale J. K., Taboas P. Z. (1978). Interaction of damping and forcing in a second order evolution equation. Nonlinear Anal. T.M.A. 2(1):77–84MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Haraux, A. (1981). Nonlinear Evolution Equations: Global Behavior of Solutions, Lecture Notes in Math, Vol. 841, Springer, Berlin.Google Scholar
  6. 6.
    Haraux, A. (1991). Systèmes dynamiques dissipatifs et applications, R.M.A.. Vol. 17. In Ciarlet, P. G., and Lions, J. L. (eds.), Masson, Paris.Google Scholar
  7. 7.
    Haraux, A. (2006). On the double well Duffing equation with a small bounded forcing term. to appear in Rend. Accad. Nazionale delle Scienze detta dei XL, Mem. Mat.Google Scholar
  8. 8.
    Loud W. S. (1959). Boundedness and convergence of solutions of x”+cx’ +g(x) = e(t). Mem. Am. Math. Soc. 31:1–57CrossRefMathSciNetGoogle Scholar
  9. 9.
    Mawhin J., Ortega R., Robles-Perez A. M. (2000). A maximun principle for bounded solutions of the telegraph equations and applications to nonlinear forcings. J. Math. Anal. Appl. 251:695–709MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Moon F. C., Holmes P. J. (1979). A magnetoelastic strange attractor. J. Sound Vib. 65(2):275–296MATHCrossRefGoogle Scholar
  11. 11.
    Reed, M., and Simon, B. (1980). Methods of Modern Mathematical Physics I: Functional Analysis, 2nd Edition, Academic, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis LionsCNRS and Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations