Periodic Solutions for Some Systems of Delay Differential Equations


In this paper, we give sufficient conditions for the existence of periodic orbits of some systems of delay differential equations with a unique delay having 3, 4 or n equations. Moreover, we provide examples of delay systems satisfying the different sets of sufficient conditions.


Delay equations periodic orbits 

1991 Mathematics Subject Classification

Primary 34K13 34K18 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bi P., Han M., Wu Y. (2003). Bifurcation of periodic solutions of delay differential equation with two delays. J. Math. Anal. Appl. 284, 548–563MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cima A., Li J., Llibre J. (2001). Periodic solutions of delay differential equations with two delay via bi–Hamiltonian systems. Ann. Diff. Eqs. 17, 2005–2014MathSciNetGoogle Scholar
  3. 3.
    Chen Y.S. (1992). The existence of periodic solutions for a class of neutral differential–difference equations. J. Aust. Math. Soc. Ser. B 33, 508–516MATHGoogle Scholar
  4. 4.
    Ge W.G. (1994). Two existence theorems of periodic solutions for differential delay equations. Chin. Ann. Math. Ser. B 15, 217–224MATHGoogle Scholar
  5. 5.
    Han M. (2003). Bifurcation of periodic solutions of delay differential equations. J. Diff. Eq. 189, 396–411MATHCrossRefGoogle Scholar
  6. 6.
    Kaplan J.L., Yorke J.A. (1974). Ordinary differential equations which yield periodic solutions of differential delay equations. J. Math. Anal. Appl. 48, 317–324MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Li J., He X.Z. (1999). Proof and generalization of Kaplan-Yorke’s conjecture under the condition f′ (0)  >  0 on periodic solution of differential delay equations. Sci. China. Ser. A 42, 957–964MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Li J., He X.Z. (1998). Multiple periodic solutions of differential delay equations created by asymptotically linear Hamiltonian systems. Nonlinear Anal. 31, 45–54MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Li J., He X.Z., Liu Z. (1999). Hamiltonian symmetric group and multiple periodic solutions of differential delay equations. Nonlinear Anal. 35, 457–474CrossRefMathSciNetGoogle Scholar
  10. 10.
    Llibre J., Tarţa A. (2006). Periodic solutions of delay equations with three delays via bi-Hamiltonian systems. Nonlinear Anal. 64, 2433–2441MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mallet-Paret J., Sell G.R. (1996). Systems of differential delay equations. Floquet multipliers and discrete Lyapunov functions. J. Diff. Eq. 125, 385–440MATHMathSciNetGoogle Scholar
  12. 12 .
    Mallet-Paret J., Sell G.R. (1996). The Poincaré-Bendixson theorem for monotone cyclic feed-back systems with delay. J. Diff. Eq. 125, 441–489MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Meng X., Wei J. (2004). Stability and bifurcation of mutual system with time delay. Chaos, Solitons Fractals 21, 729–740MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Shayer L.P., Campbell S.A. (2000). Stability, bifurcation and multistability in a system of two coupled neurons with multiple time delays. SIAM J. Appl. Math. 61, 673–700MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Song Y., Han M., Wei J. (2005). Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays. Physica D 200, 185–204MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wang L., Zou X. (2004). Hopf bifurcation in bidirectional associative memory neural networks with delays: analysis and computation. J. Comput. Appl. Math. 167, 73–90MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ze, Ye Zong. (1993). Periodic solutions to differential delay equations obtained from ordinary differential equations. J. Tianjin Univ. 2, 89–94Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Departament De MatemàtiquesUniversitat Autònoma De BarcelonaBarcelonaSpain
  2. 2.Department Of Applied MathematicsBabeş-Bolyai UniversityClujRomania

Personalised recommendations