Skip to main content
Log in

Spatial and Dynamical Chaos Generated by Reaction–Diffusion Systems in Unbounded Domains

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

We consider in this article a nonlinear reaction–diffusion system with a transport term (L,∇ x )u, where L is a given vector field, in an unbounded domain Ω. We prove that, under natural assumptions, this system possesses a locally compact attractor \(\mathcal{A}\) in the corresponding phase space. Since the dimension of this attractor is usually infinite, we study its Kolmogorov’s ɛ-entropy and obtain upper and lower bounds of this entropy. Moreover, we give a more detailed study of the spatio-temporal chaos generated by the spatially homogeneous RDS in \(\Omega = \mathbb{R}^{n}\). In order to describe this chaos, we introduce an extended (n  +  1)-parametrical semigroup, generated on the attractor by 1-parametrical temporal dynamics and by n-parametrical group of spatial shifts ( = spatial dynamics). We prove that this extended semigroup has finite topological entropy, in contrast to the case of purely temporal or purely spatial dynamics, where the topological entropy is infinite. We also modify the concept of topological entropy in such a way that the modified one is finite and strictly positive, in particular for purely temporal and for purely spatial dynamics on the attractor. In order to clarify the nature of the spatial and temporal chaos on the attractor, we use (following Zelik, 2003, Comm. Pure. Appl. Math. 56(5), 584–637) another model dynamical system, which is an adaptation of Bernoulli shifts to the case of infinite entropy and construct homeomorphic embeddings of it into the spatial and temporal dynamics on \(\mathcal{A}\). As a corollary of the obtained embeddings, we finally prove that every finite dimensional dynamics can be realized (up to a homeomorphism) by restricting the temporal dynamics to the appropriate invariant subset of \(\mathcal{A}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abergel F. (1990). Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains. J. Diff. Eqns. 83, 85–108

    Article  MATH  MathSciNet  Google Scholar 

  2. Afromovich V., Babin A., Chow S. (1996) Spatial chaotic structure of attractors of reaction-diffusion systems. Trans. Amer. Math. Soc 348(12): 5031–5063

    Article  MathSciNet  Google Scholar 

  3. Agmon S., Nirenberg L., (1967). Lower bounds and uniqueness theorems for solutions of differential equations in a hilbert space. Comm. Pure Appl. Math. 20, 207–229

    MATH  MathSciNet  Google Scholar 

  4. Babin A., Vishik M., (1992). Attractors of Evolutionary Equations. North Holland, Amsterdam

    Google Scholar 

  5. Babin A., Vishik M., (1990) Attractors of partial differential evolution equations in an un- bounded domain. Proc. Roy. Soc. Edinburgh Sect. A 116(3–4): 221–243

    MathSciNet  MATH  Google Scholar 

  6. Babin A., (1995). On space-chaotic solutions to scalar parabolic equations with modulated nonlinearities. Rus. Jour. Math. Phys. 3(3): 389–392

    MATH  MathSciNet  Google Scholar 

  7. Babin A., Nicolaenko B., (1995). Exponential attractors of reaction-diffusion systems in an unbounded domain. J. Dyn. Diff. Eqns. 7(4): 567–590

    Article  MATH  MathSciNet  Google Scholar 

  8. Calsina À., Mora X., Solà-Morales J., (1993) J. The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit. J. Diff. Eqns. 102, 244–304

    Article  MATH  Google Scholar 

  9. Chepyzhov V., Vishik M.,(1998) Kolmogorov’s ɛ-entropy for the attractor of equation. Math. Sbornik 189(2): 81–110

    MATH  MathSciNet  Google Scholar 

  10. Clement F., Heimans X., Angenent A., et al., (1992) One-parameter semigroups, Moscow

  11. Collet P., Eckmann J., (1999). Extensive properties of the complex ginzburg-landau equation. Commun. Math. Phys. 200, 699–722

    Article  MATH  MathSciNet  Google Scholar 

  12. Collet P., Eckmann J., (1999). The definition and measurement of the topological entropy per unit volume in parabolic PDE. Nonlinearity 12, 451–473

    Article  MATH  MathSciNet  Google Scholar 

  13. Collet P., Eckmann J., (2000). Topological entropy and ɛ-entropy for damped hyperbolic equations. Ann. Inst. Henri Poincaré 1(4): 715–752

    Article  MATH  MathSciNet  Google Scholar 

  14. Coti Zelati V., Nolasco M., (1999). Multibump solutions for hamiltonian systems with fast and slow forcing. Bollettino U.M.I. 8(2-B): 585–608

    MathSciNet  Google Scholar 

  15. Eckmann J.-P., Rougemont J., (1999). Coarsening by ginzburg-landau dynamics. Comm. Math. Phys. 199, 441–470

    Article  MathSciNet  Google Scholar 

  16. Efendiev M., Miranville A., (1999). Finite dimensional attractors for RDE in R n with a strong nonlinearity. Disc. Cont. Dyn. Syst. 15(2): 399–424

    MathSciNet  Google Scholar 

  17. Efendiev M., Zelik S., (2001). The Attractor for a nonlinear reaction-diffusion system in an unbounded domain. Comm. Pure Appl. Math. 54(6): 625–688

    Article  MATH  MathSciNet  Google Scholar 

  18. Efendiev M., Zelik S., (2002). Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization. Ann. Inst. H. Poincare AN 19. 6, 961–989

    Article  MATH  MathSciNet  Google Scholar 

  19. Efendiev M., Zelik S., (2002). Upper and lower bounds for the kolmogorov entropy of the attractor for an RDE in an unbounded domain. JDDE 14(2): 369–403

    MATH  MathSciNet  Google Scholar 

  20. Feireisl E., Laurencot Ph., Simondon F., Toure H., (1994). Compact attractors for reaction-diffusion equations in \(\mathbb{R}^{n}\). C.R. Acad. Sci Paris Ser.I319, 147–151

  21. Feireisl E., (1996). Bounded locally compact global attractors for semilinear damped wave equations on \(\mathbb{R}^{n}\). Diffe. and Inte. Eqs. 9(5), 1147–1156

    Google Scholar 

  22. Gallay Th., Slijepčević S. (2001). Energy flow in formally gradient partial differential equations in unbounded domains. JDDE 13(4): 757–789

    MATH  Google Scholar 

  23. Ginibre J., Velo G., (1996). The cauchy problem in local spaces for the complex equation I. compactness methods. Physica D 187, 45–79

    Google Scholar 

  24. Hale J., (1987). Asymptotic behavior of dissipative systems. Math. Surveys Mon. Vol. 25 Amer. Math. Soc., Providence, RI.

  25. Katok A., Hasselblatt B., (1995). Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  26. Kirchgässner K., (1982). Wave solutions of reversible systems and applications. J. Diff. Eqns. 45, 113–127

    Article  MATH  Google Scholar 

  27. Kolmogorov A., Tikhomirov V., (1993). ɛ-entropy and ɛ-capacity of Sets in Functional Spaces, In Selected works of Kolmogorov A.N. (ed.), Vol. III, Kluwer, Dordrecht.

  28. Ladyzhanskaya O.,, Solonnikov V., Uraltseva N., (1967). Linear and quasilinear equations of parabolic type. M. Nauka.

  29. Merino S., (1996). On the existence of the global attractor for semilinear RDE on Rn. J. Diff. Eqn. 132, 87–106

    Article  MATH  MathSciNet  Google Scholar 

  30. Mielke A., (2002). The ginzburg-landau equation in its role as a modulation equation. In Handbook for Dynamical System Fiedler B., Elsevier, Amsterdam, pp. 759–834

  31. Mielke A., (1997). The complex ginzburg-landau equation on large and unbounded domains: sharper bounds and attractors. Nonlinearity 10, 199–222

    Article  MATH  MathSciNet  Google Scholar 

  32. Mielke A., (1998). Bounds for the solutions of the complex ginzburg-landau equation in terms of the dispersion parameters. Physica D 117, 106–116

    Article  MATH  MathSciNet  Google Scholar 

  33. Mielke A., Schnider G., (1995). Attractors for modulation equations on unbounded domains - existence and comparison. Nonlinearity 8, 743–768

    Article  MATH  MathSciNet  Google Scholar 

  34. Milnor J., (1988). On the entropy geometry of cellular automata. Complex Sys. 31, 357–385

    MathSciNet  Google Scholar 

  35. Temam R., (1988). Infinite-dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New-York

    MATH  Google Scholar 

  36. Triebel H., (1978). Interpolation Theory, Function Space, Differential Operators. North-Holland, Amsterdam-New York

    Google Scholar 

  37. Vishik M., Zelik S., (1999). The regular attractor for a nonlinear elliptic system in an unbounded domain. Mat. Sbornik 190(6): 23–58

    MathSciNet  Google Scholar 

  38. Zeidler E., (1985). Nonlinear Functional Analysis and its Applications Part I Fixed-Point Theorems. SpringerVerlag, Berlin

    Google Scholar 

  39. Zelik S., (1999). The attractor for an nonlinear reaction-diffusion system in \(\mathbb{R}^{n}\) and the estimation of it’s ɛ-entropy. Math. Notes 65(6): 941–943

    MathSciNet  Google Scholar 

  40. Zelik S., (2001). The attractor for a nonlinear reaction-diffusion system in an unbounded domain and kolmogorov’s epsilon-entropy. Math. Nachr. 232(1): 129–179

    Article  MATH  MathSciNet  Google Scholar 

  41. Zelik S., (2000). The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and it’s dimension. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 24, 1–25

    MathSciNet  Google Scholar 

  42. Zelik S., (2000). The attractor for a semilinear damped hyperbolic equation in \(\mathbb{R}^{n}\): dimension and ɛ-entropy. Math. Notes 67(2): 304–307

    Article  MathSciNet  Google Scholar 

  43. Zelik S., (2001). The attractor for a nonlinear hyperbolic equation in an unbounded domain. Disc. Cont. Dyn Sys. Ser. A 7(3): 593–641

    Article  MATH  MathSciNet  Google Scholar 

  44. Zelik S., (2003). Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity. Comm. Pure Appl. Math. 56(5): 584–637

    Article  MATH  MathSciNet  Google Scholar 

  45. Zelik S., Mielke A., Infinite-dimensional hyperbolic sets and spatio-temporal chaos in reaction–diffusion systems in \(\mathbb{R}^{n}\), submitted.

  46. Zelik S., (2004). Multiparametrical semigroups and attractors of reaction-diffusion systems in \(\mathbb{R}^{n}\). Proc. Moscow Math. Soc. 65, 69–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelik, S.V. Spatial and Dynamical Chaos Generated by Reaction–Diffusion Systems in Unbounded Domains. J Dyn Diff Equat 19, 1–74 (2007). https://doi.org/10.1007/s10884-006-9007-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-006-9007-4

Keywords

1991 Mathematics Subject Classification

Navigation