Journal of Dynamics and Differential Equations

, Volume 17, Issue 4, pp 643–736 | Cite as

Relations Between Energy and Enstrophy on the Global Attractor of the 2-D Navier-Stokes Equations



We examine how the global attractor \(\mathcal {A}\) of the 2-D periodic Navier–Stokes equations projects in the normalized, dimensionless energy–enstrophy plane (e, E). We treat time independent forces, with the view of understanding how the attractor depends on the nature of the force. First we show that for any force, \(\mathcal {A}\) is bounded by the parabola E = e1/2 and the line E=e. We then show that for \(\mathcal {A}\) to have points near enough to the parabola, the force must be close to an eigenvector of the Stokes operator A; it can intersect the parabola only when the force is precisely such an eigenvector, and does so at a steady state parallel to this force. We construct a thin region along the parabola, pinched at such steady states, that the attractor can never enter. We show that 0 cannot be on the attractor unless the force is in H m for all m. Different lower bound estimates on the energy and enstrophy on \(\mathcal {A}\) are derived for both smooth and nonsmooth forces, as are bounds on invariant sets away from 0 and near the line E = e. Motivation for the particular attention to the regions near the parabola and near 0 comes from turbulence theory, as explained in the introduction.


Navier-Strokes equations turbulence energy cascade 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batchelor, G. K. (1953). The Theory of Homogeneous Turbulence, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge at the University Press.Google Scholar
  2. 2.
    Batchelor, G. K. (1982). The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, Reprint, Cambridge Science Classics.Google Scholar
  3. 3.
    Boffetta, G., Celani, A., Vergassola, M. 2000Inverse energy cascade in two-dimensional turbulence: deviations from gaussian behaviorPhys. Rev. E.612932Google Scholar
  4. 4.
    Borue, V. 1994Inverse energy cascade in stationary two-dimensional turbulencePhys. Rev. Lett.7214751478CrossRefGoogle Scholar
  5. 5.
    Babin, A. V., Vishik, M. I. 1983Attractors of partial differential equations and estimate of their dimensionsRussian Math. Surveys.38151213CrossRefMathSciNetGoogle Scholar
  6. 6.
    Constantin, P., Foias, C. 1988Navier-Stokes Equations Chicago. Lectures in MathematicsUniversity of Chicago PressChicago, ILGoogle Scholar
  7. 7.
    Constantin, P., Foias, C., Temam, R. 1985Attractors representing turbulent flowsMem. Am. Math. Soc.53167MathSciNetGoogle Scholar
  8. 8.
    Constantin, P., Foias, C., Temam, R. 1988On the dimension of the attractors in two-dimensional turbulencePhys. D.30284296CrossRefMathSciNetGoogle Scholar
  9. 9.
    Dascaliuc, R., Foias, C., and Jolly, M. S. (2005). On the location of the global attractor of the 2-d periodic Navier–Stokes equations in the energy-enstrophy-palinstrophy space (in preparation).Google Scholar
  10. 10.
    Doering, C.R., Gibbon, J.D. 1995Applied Analysis of the Navier-Stokes Equations. Cambridge Texts in Applied MathematicsCambridge University PressCambridgeGoogle Scholar
  11. 11.
    Foias, C., Jolly, M.S., Manley, O.P., Rosa, R. 2002Statistical estimates for the Navier–Stokes equations and the Kraichnan theory of 2-D fully developed turbulenceJ. Statist. Phys.108591645MathSciNetGoogle Scholar
  12. 12.
    Foias, C., Manley, O.P., Temam, R., Trève, Y.M. 1983Asymptotic analysis of the Navier-Stokes equationsPhys. D9157188CrossRefMathSciNetGoogle Scholar
  13. 13.
    Foias C., Nicolaenko B. (2005). On the algebra of the curl operator in the Navier-Stokes equations. In preparation.Google Scholar
  14. 14.
    Foias, C. (1997). What do the Navier–Stokes equations tell us about turbulence? In Harmonic analysis and nonlinear differential equations (Riverside, CA, 1995), Volume 208 of Contemp. Math., pages 151–180. Amer. Math. Soc., Providence, RI.Google Scholar
  15. 15.
    Frisch, U., Sulem, P.-L. 1984Numerical simulation of the inverse cascade in two-dimensional turbulencePhys. Fluids.2719211923CrossRefGoogle Scholar
  16. 16.
    Gkioulekas, E., Tung, K. K. 2005On the double cascades of energy and enstrophy in two-dimensional turbulence. Part 1. Theoretical formulationDiscrete Contin. Dyn. Syst.579102MathSciNetGoogle Scholar
  17. 17.
    Gkioulekas, E., Tung, K.K. 2005On the double cascades of energy and enstrophy in two-dimensional turbulence. Part 2. Approach to the klb limit and interpretation of experimental evidenceDiscrete Contin. Dyn. Syst5103124MathSciNetGoogle Scholar
  18. 18.
    Kolmogorov AN. (1991). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc Roy Soc Lond Ser A. 434(1890), 9–13. Translated from the Russian by V. Levin, Turbulence and stochastic processes: Kolmogorov’s ideas 50 years on.Google Scholar
  19. 19.
    Kraichnan, R.H. 1967Inertial ranges in two-dimensional turbulencePhys.Fluids.1041171423Google Scholar
  20. 20.
    Ladyzhenskaya, O.A. 1969The Mathematical Theory of Viscous Incompressible Flow2Gordon and BreachNew YorkGoogle Scholar
  21. 21.
    Leith, C.E. 1968Diffusion approximation for two-dimensional turbulencePhys. Fluids11671673Google Scholar
  22. 22.
    Marchioro, C. 1987An example of absence of turbulence for any Reynolds number. II.Comm. Math. Phys.108647651CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Robinson, J.C. 2001Infinite-Dimensional Dynamical SystemsCambridge University PressCambridgeGoogle Scholar
  24. 24.
    Sell, G.R., You, Y. 2002Dynamics of Evolutionary Equations, Vol. 143 of Applied Mathematical Sciences,2Springer-VerlagNew YorkGoogle Scholar
  25. 25.
    Tran, C.V., Bowman, J.C. 2003On the dual cascade in two-dimensional turbulencePhys. D.176242255CrossRefMathSciNetGoogle Scholar
  26. 26.
    Tran C V., Bowman JC. (2004). Robustness of the inverse cascade in two-dimensional turbulence. Phys. Rev. E. 69, follwed by 036303.Google Scholar
  27. 27.
    Temam, R. 1997Infinite-dimensional Dynamical Systems in Mechanics and Physics, Vol. 68 of Applied Mathematical Sciences2Springer-VerlagNew YorkGoogle Scholar
  28. 28.
    Titi, E.S. 1987On a criterion for locating stable stationary solutions to the Navier-Stokes equationsNonlinear Anal.1110851102CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Tran, C.V., Shepherd, T.G. 2002Constraints on the spectral distribution of energy and enstrophy dissipation in forced two-dimensional turbulencePhys. D165199212CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA
  2. 2.Department of MathematicsTexas A&M UniversityUSA

Personalised recommendations