Skip to main content
Log in

The Analysis of Some Characteristic Equations Arising in Population and Epidemic Models

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Epidemic models with a general infective period distribution are formulated as functional differential equations, as are population models with a general life span distribution. The analysis of the local stability properties of equilibria of such models leads to a characteristic equation involving the Laplace transform of the infective period (or life span) distribution. We obtain conditions under which all roots of the characteristic equation are in the left half plane, implying asymptotic stability of equilibrium, for every infective period distribution. We also consider the converse problem of describing when instability can occur for specific infective period distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Breauer, F.(1987).A class of Volterra integral equations arising in delayed-recruitment population models.Nat.Res.Model. 2,259–278.

    Google Scholar 

  2. Brauer, F.(1990).Models for the spread of universally fatal diseases.J.Math.Biol. 28, 451–462.

    Google Scholar 

  3. Brauer, F.(2003).Disease mortality in epidemic models.Dyn.Contin.Discret.Impulsive Syst. 10,377–387.

    Google Scholar 

  4. Brauer, F.,and Castillo-Chavez, C.(2001).Mathematical Models in Population Biology and Epidemics,Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  5. Buenberg, S.,and Cooke, K.L.(1978).Periodic solution of a periodic nonlinear delay differential equation.SIAM J.Appl.Math. 35,704–721.

    Google Scholar 

  6. Busenberg, S.,and Cooke, K.L.(1980).The effect of integral conditions in certain equa-tions modeling epidemics and population growth.J.Math.Biol.13–22.

  7. Cooke, K.L.,and Yorke, J.A.(1973).Some equations modelling growth process and gon-orrhea epidemics.Math.Biosci. 16,75–101.

    Google Scholar 

  8. Hetcote, H.W.(1976).Qualitative analysis for communicable disease models.Math.Bio-sci. 28,335–356.

    Google Scholar 

  9. Hethcote, H.W.(1989).Three basic epidemiological models.In Levin, S.A., Hallam, T.G., and Gross, L.J.(eds.),Applied Mathematical Ecology,Biomathematics Vol.18,Springer-Verlag, Berlin-Heidelberg-New York,pp.119–144.

  10. Hethcote, H.W.,and Levin, S.A.(1989).Periodicity in epidemic models.In Levin S. A., Hallam,T. G.,and Gross, L.J.(eds.),Applied Mathematical Ecology,Biomathematics Vol.18,Springer-Verlag, Berlin-Heidelberg-New York,pp.193–211.

    Google Scholar 

  11. Hethcote, H.W., Stech, H.W.and van den Driessche, P.(1981a).Nonlinear oscillations in epidemic models.SIAM J.Math.Anal. 40,1–9.

    Google Scholar 

  12. Hethcote, H.W., Stech, H.W.and van den Driessche, P.(1981b).Stability analysis for models of diseases without immunity.J.Math.Biol. 13,185–198.

    Google Scholar 

  13. Hethcote, H.W., Stech,H.W.,and van den Driessche, P.(1981c).Periodicity and stabil-ity in epidemic models:A survey.In Busenberg, S.N.,and Cooke, K.L.(eds.),Differen-tial Equations and Applications in Ecology,Epidemics and Population Problems,pp.65–82.

  14. Wilkins, J.E.(1945).The differential-difference equation for the epidemics.B.Math.Bio-phys. 7,149–150.

    Google Scholar 

  15. Wilson, E.B.,and Burke, M.H.(1942).The epidemic curve.Proc.Natl.Acad.Sci.USA 28,361–367.

    Google Scholar 

  16. Wilson, E.B.,and Worcester, J.(1944).A second approximation to Soper 's epidemic curve.Proc.Natl.Acad.Sci.USA 30,37–44.

    Google Scholar 

  17. Wilson, L.O.(1972).An epidemic model involving a threshold.Math.Biosci. 15, 109–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brauer, F. The Analysis of Some Characteristic Equations Arising in Population and Epidemic Models. Journal of Dynamics and Differential Equations 16, 441–453 (2004). https://doi.org/10.1007/s10884-004-4287-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-004-4287-z

Navigation