Stackelberg-Nash Controllability for a Quasi-linear Parabolic Equation in Dimension 1D, 2D, or 3D

Abstract

This paper deals with the application of Stackelberg-Nash strategies to the control to quasi-linear parabolic equations in dimensions 1D, 2D, or 3D. We consider two followers, intended to solve a Nash multi-objective equilibrium; and one leader satisfying the controllability to the trajectories.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Alekseev VM, Tikhomorov VM, Formin SV. Optimal control. New York: Consultants Bureau; 1987.

    Google Scholar 

  2. 2.

    Araruna FD, Fernández-Cara E, Santos MC. Stackelberg-Nash controllability for linear and semilinear parabolic equations. ESAIM: Control Optim Calc Var 2015;21:835–56.

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Araruna FD, Fernández-Cara E, Guerrero S, Santos MC. New results on the Stackelberg-Nash exact control of linear parabolic equations. Syst Control Lett 2017;104:78–85.

    MathSciNet  Article  Google Scholar 

  4. 4.

    Beceanu M. Local exact controllability of the diffusion equation in one dimensional. Abstr Appl Anal 2003;14:793–811.

    MathSciNet  Article  Google Scholar 

  5. 5.

    Clark HR, Fernández-Cara E, Limaco J, Medeiros LA. Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities. Appl Math Comput 2013;223:483–505.

    MathSciNet  Article  Google Scholar 

  6. 6.

    Díaz J. On the Von Neumann problem and the approximate controllability of Stackelberg-Nash strategies for some environmental problems. Rev R Acad Cien Serie A Mat 2002;96(3):343–56.

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Fernández-Cara E, Nina-Huaman D, Nuñez-Chávez MR, Vieira FB. On the theoretical and numerical control of a one-dimensional nonlinear parabolic partial differential equation. J Optim Theory Appl 2017;175(3):652–82.

    MathSciNet  Article  Google Scholar 

  8. 8.

    Fursikov AV, Imanuvilov OY. 1996. Controllability of evolution equations, lecture note series. Research Institute of Mathematics Seoul National University.

  9. 9.

    Glowinski R, Ramos A, Periaux J. Nash equilibria for the multiobjective control of linear partial differential equations. J Optim Theory Appl 2002; 112(3):457–98.

    MathSciNet  Article  Google Scholar 

  10. 10.

    Guillén-González F, Marques-Lopes F, Rojas-Medar M. On the approximate controllability of Stackelberg-Nash strategies for Stokes equations. Proc Am Math Soc 2013;141(5):1759–73.

    MathSciNet  Article  Google Scholar 

  11. 11.

    Hernández V, de Teresa L. Some remark on the hierarchic control for coupled parabolic PDEs. Book Springer Series SEMA SIMAI 2018;17:117–37.

    MathSciNet  Article  Google Scholar 

  12. 12.

    Hernández V, de Teresa L, Poznyak A. Hierarchic control for a coupled parabolic system. Portugaliae Math Fasc 2016;2:115–37.

    MathSciNet  Article  Google Scholar 

  13. 13.

    Imanuvilov OY, Yamamoto M. Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ RIMS Kyoto Univ 2003;39:227–74.

    MathSciNet  Article  Google Scholar 

  14. 14.

    Límaco J, Clark H, Medeiros L. Remarks on hierarchic control. J Math Anal Appl 2009;359(1):368–83.

    MathSciNet  Article  Google Scholar 

  15. 15.

    Lions JL. Hierarchical control. Proc Indian Acad Sci Math Sci 1994; 104(1):295–304.

    MathSciNet  Article  Google Scholar 

  16. 16.

    Lions JL. Some remark on Stackelberg optimization. Math Models Methods Appl Sci 1994;4:477–87.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Nash JF. Non-cooperative games. Ann Math 1951;54(2):286–95.

    MathSciNet  Article  Google Scholar 

  18. 18.

    Rincon MA, Limaco J, Liu I-S. A nonlinear heat equation with temperature-dependent parameters. Math Phys Electron J. 2006;12.

  19. 19.

    Von Stackelberg H. Marktform und Gleichgewicht. Vienna: Springer; 1934.

    Google Scholar 

Download references

Funding

Partially supported by CAPES (Brazil)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dany Nina Huaman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 3.1

Appendix: Proof of Theorem 3.1

Consider the following system:

$$ \left\{ \begin{array}{lll} z_{t} - \nabla \cdot (a(z+\overline{y}) \nabla z) -\nabla\cdot B(z)= g& \text{in} &Q,\\ \noalign{}\phantom{} z(x,t) = 0& \text{on}&{\Sigma},\\ \noalign{}\phantom{} z(x,0) = z^{0}(x)\ & \text{in}& {\Omega}. \end{array} \right. $$
(A.66)

In order to prove the existence of solution, we will first study the existence of solution for Eq. A.66. We have the following:

Lemma A.1

There exists r > 0 such that for each \(z^{0}\in H^{3}({\Omega })\cap {H^{1}_{0}}({\Omega })\) and gH1(0,T; L2(Ω)) with ∇g(0) ∈ L2(Ω) satisfying

$$ ||z^{0}||_{H^{3}({\Omega})}+||g||_{H^{1}(0,T;L^{2}({\Omega}))}+||\nabla g(0)||\leq r, $$

the problem Eq. A.66has a unique solution z satisfying

$$ ||z||_{L^{2}(0,T;H^{2}({\Omega}))}+||z_{t}||_{L^{2}(Q)}\leq C \left( ||z^{0}||_{H^{3}({\Omega})}+||g||_{H^{1}(0,T;L^{2}({\Omega}))}+||\nabla g(0)|| \right) $$

Where \(C:=C(M, {\Omega }, a_{0}, a_{1}, \overline {y})\)

Proof

The proof in this lemma is obtained by the argument similar to Theorem 3 in [18]. We employ Galerkin method with the Hilbertian basis from \({H^{1}_{0}}({\Omega })\), given by eigenvectors (wj) of the spectral problem ((wj,v)) = λj(wj,v), for all \(v\in V=H^{3}({\Omega })\cap {H^{1}_{0}}({\Omega })\) and j = 1, 2, 3,... We represent by Vm the subspace of V generated by vectors {w1,w2,...,wm}. We propose the following approximate problem:

$$ \left\{\begin{array}{l} (z^{\prime}_{m},v)+(a(z_{m}+\overline{y})\nabla z_{m},\nabla v)+(B(z_{m}),\nabla v)= (g,v) \forall v\in V_{m}\\ \noalign{} z_{m}(0)=z_{0m}\to z^{0} \text{in} H^{3}({\Omega})\cap {H^{1}_{0}}({\Omega}) \end{array}\right. $$
(A.67)

The existence and uniqueness of (local in time) solution to the Eq. A.67 are ensured by classical ODE theory. The following estimates show that, in fact, they are defined for all t. We can get uniform estimates of the zm in the usual ways:

Estimate I::

Taking v = zm(t) in Eq. A.67, we deduce that

$$ \frac{1}{2}\frac{d}{dt}||z_{m}||^{2}+\frac{a_{0}}{2}{\int}_{\Omega}|\nabla z_{m}|^{2} dx\leq \tilde{C}_{1}||z_{m}||^{2}+||g||^{2} $$
(A.68)

and

$$ ||z_{m}||^{2}_{L^{\infty}(0,T;L^{2}({\Omega}))}+||\nabla z_{m}||^{2}_{L^{2}(Q)}\leq \tilde{C}_{2}(||z^{0}||^{2}+||g||^{2}_{L^{2}(Q)}) $$
(A.69)

In the sequel, the symbol \(\tilde {C}_{k}\) is a constant that only depends on \(M, {\Omega }, a_{0}, a_{1}, \overline {y}\), for k = 1, 2,..., 20

Estimate II::

Taking v = −Δzm(t) in Eq. A.67, we see that

$$ \frac{1}{2}\frac{d}{dt}||\nabla z_{m}||^{2}+\frac{a_{0}}{4}||{\Delta} z_{m}||^{2}\leq \tilde{C}_{2}||\nabla z_{m}||^{2}+ \tilde{C}_{3}||{\Delta} z_{m}||^{4}+\frac{2}{a_{0}\tilde{C}_{11}}||g||^{2} $$
(A.70)
Estimate III::

Taking \(v=-{\Delta } z^{\prime }_{m}\), we deduce that

$$ ||\nabla z^{\prime}_{m}||^{2}+\frac{1}{2}\frac{d}{dt}\left( {\int}_{\Omega}a(z_{m}+\overline{y})|{\Delta} z_{m}|^{2} dx\right)\leq \tilde{C}_{4}||{\Delta} z_{m}||^{2} + \frac{a_{0}}{8\tilde{C}_{8}}||{\Delta} z^{\prime}_{m}||^{2}+\frac{8}{a_{0}\tilde{C}_{8}}||g||^{2} $$
(A.71)
Estimate IV::

Taking derivative in the Eq. A.671 with respect t and taking \(v=-{\Delta } z^{\prime }_{m}\), we have

$$ \begin{array}{@{}rcl@{}} &&\ \frac{1}{2}\frac{d}{dt}||\nabla z^{\prime}_{m}||^{2}+\frac{a_{0}}{2}||{\Delta} z^{\prime}_{m}||^{2}\leq \tilde{C}_{5}||{\Delta} z_{m}||^{4}+\tilde{C}_{6}||{\Delta} z_{m}||^{2} ||{\Delta} z^{\prime}_{m}||^{2}\\ &&\qquad\qquad +\tilde{C}_{7}||{\Delta} z_{m}||^{2}+\tilde{C}_{8}||\nabla z^{\prime}_{m}||^{2}+\tilde{C}_{9}(||g||^{2}+||g^{\prime}||^{2}) \end{array} $$
(A.72)

We will denote by \(\tilde {C}_{10}=\tilde {C}_{9}+\frac {8}{a_{0}}\), \(\tilde {C}_{11}=2\tilde {C}_{4}\tilde {C}_{8}+\tilde {C}_{7}\), \(\tilde {C}_{12}=\frac {8\tilde {C}_{11}}{a_{0}}\) and \(\tilde {C}_{14}=\tilde {C}_{2} \tilde {C}_{12}\). Now, multiplying Eq. A.71 by \(2\tilde {C}_{8}\), Eq. A.70 by \(\tilde {C}_{12}\), Eq. A.68 by \(\tilde {C}_{15}\) and adding these terms, from Eq. A.69, we have

$$ \begin{array}{@{}rcl@{}} \frac{1}{2}\frac{d}{dt}\left( \tilde{C}_{15}||z_{m}||^{2}+\tilde{C}_{12}||\nabla z_{m}||^{2}+\tilde{C}_{8}{\int}_{\Omega}a(z_{m}+\overline{y})|{\Delta} z_{m}|^{2} dx+||\nabla z^{\prime}_{m}||^{2}\right)\\ \noalign{}\phantom{aaa} + \tilde{C}_{14}||\nabla z_{m}||^{2}+ (\tilde{C}_{11}-\tilde{C}_{16}||{\Delta} z_{m}||^{2})||{\Delta} z_{m}||^{2}+\left( \frac{a_{0}}{4}-\tilde{C}_{17}||{\Delta} z_{m}||^{2}\right)||{\Delta} z^{\prime}_{m}||^{2}\\ \noalign{}\phantom{QQQQQQ} \leq \tilde{C}_{19}\left( ||z^{0}||^{2}+||g||^{2}_{L^{2}(Q)}\right)+\tilde{C}_{20}\left( ||g||^{2}+||g^{\prime}||^{2}\right)\\ \end{array} $$
(A.73)

From Eq. A.67 taking \(v=-{\Delta } z^{\prime }_{m}(0)\), we have

$$ ||\nabla z^{\prime}_{m}(0)||^{2}\leq \tilde{C}^{2}_{21} \left( || {\Delta} z^{0}||^{2}+||z^{0}||_{H^{3}}+||\nabla g(0)||\right)^{2} $$
(A.74)

There exists 𝜖0 > 0 such that for

$$ \left( ||z^{0}||_{H^{3}({\Omega})}+||g||_{L^{2}(Q)}+||g^{\prime}||_{L^{2}(Q)}+||\nabla g(0)||\right)<\epsilon_{0} $$

we have

$$ \left\{\begin{array}{l} \noalign{}\phantom{QQQQQ|} ||{\Delta} z^{0}||^{2}<\frac{\tilde{a}}{\tilde{C}_{16}+\tilde{C}_{17}},\\ \noalign{}\phantom{|} \frac{1}{2}\left( \tilde{C}_{15}||z^{0}||^{2}+\tilde{C}_{12}||\nabla z^{0}||^{2}+\tilde{C}_{8}a_{1}||{\Delta} z^{0}||^{2}\right)+\tilde{C}_{20}(||g||^{2}_{L^{2}(Q)}+||g^{\prime}||^{2}_{L^{2}(Q)})\\ \noalign{}\phantom{|} +\frac{1}{2}\tilde{C}^{2}_{21}\left( ||z^{0}||_{H^{3}}+||{\Delta} z^{0}||^{2}+||\nabla g(0)||\right)^{2} +\tilde{C}_{19}T\left( ||z^{0}||^{2}+||g||^{2}_{L^{2}(Q)}\right)\\ \noalign{}\phantom{WWW} <\frac{\tilde{a}\tilde{C}_{8}a_{0}}{4\left( \tilde{C}_{16}+\tilde{C}_{17}\right)}, \end{array}\right. $$
(A.75)

where \( \tilde {a}=min\left \{\frac {a_{0}}{4},\tilde {C}_{11}\right \}\).

Therefore, we can confirm that

$$ ||{\Delta} z_{m}||^{2}<\frac{\tilde{a}}{\tilde{C}_{16}+\tilde{C}_{17}}, \forall t\geq 0 $$
(A.76)

We argue by contradiction and using Eqs. A.73A.74, and A.75 . Since, the inequality Eq. A.76 is valid, we obtain that

$$ \begin{array}{@{}rcl@{}} &&(z_{m}) \text{is bounded in} L^{\infty}(0,T;{H^{1}_{0}}({\Omega})\cap H^{2}({\Omega})),\\ &&(z^{\prime}_{m}) \text{is bounded in} L^{2}(0,T;{H^{1}_{0}}({\Omega})\cap H^{2}({\Omega}))\cap L^{\infty}(0,T;{H^{1}_{0}}({\Omega})) \end{array} $$

These uniform bounds allow taking limits in Eq. A.67 (at least for a subsequence) as \(m\to \infty \). Indeed, the unique delicate point is the a.e. convergence of \(a(z_{m}+\overline {y})\). But this is a consequence of the fact that the sequence {zm} is pre-compact in \(L^{2}(0,T;{H^{1}_{0}}({\Omega }))\) and \(a\in C^{3}(\mathbb {R})\).

The uniqueness of the strong solution to Eq. A.67 can be proved by argument standards (to see [18]). □

Proof of Theorem 3.1

Let r given by Lemma A.1 and assume that

$$ ||z^{0}||_{H^{3}({\Omega})\cap {H^{1}_{0}}({\Omega})}+||f||_{H^{1}(0,T;L^{2}(\mathcal{O}))}+||\nabla f(0)||\leq \frac{r}{2}, $$

we will use Schauder’s Fixed Point Theorem. Indeed, let R0 be a constant to be determined later, let us introduce the Banach space K1 and K2, with

$$ \begin{array}{@{}rcl@{}} &&K_{1}=\{w\in H^{1}(0,T;H^{2}({\Omega}); \nabla w(0)\in L^{2}({\Omega})\}\\ &&K_{2}=\{w\in L^{\infty}(0,T;H^{2}({\Omega})\cap {H^{1}_{0}}({\Omega})), w_{t}\in L^{2}(0,T;{H^{1}_{0}}({\Omega}))\cap L^{\infty}(0,T;L^{2}({\Omega})),\\ &&\phantom{WWWWWW} w_{tt}\in L^{2}(0,T;H^{-1}({\Omega}))\} \end{array} $$

denote by Z = K1 × K1, K = K2 × K2 and fix \((\hat {p}^{1},\hat {p}^{2})\in B_{K}[0,R_{0}]\). Notice that

$$ \begin{array}{@{}rcl@{}} && ||z^{0}||_{H^{3}({\Omega})}+||f 1_{\mathcal{O}}-\frac{1}{\mu_{1}}\hat{p}^{1} 1_{\mathcal{O}_{1}}-\frac{1}{\mu_{2}}\hat{p}^{2} 1_{\mathcal{O}_{2}} ||_{H^{1}(0,T;L^{2}({\Omega}))}\\ &&\phantom{QQ} +||\nabla \left( f1_{\mathcal{O}}-\frac{1}{\mu_{1}}\hat{p}^{1}1_{\mathcal{O}_{1}}-\frac{1}{\mu_{2}}\hat{p}^{2}1_{\mathcal{O}_{2}}\right)(0)||\leq \frac{r}{2}+R_{0}\left( \frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}\right). \end{array} $$

If we take \(R_{0} = \frac {r}{2}\left (\frac {1}{\mu _{1}}+\frac {1}{\mu _{2}}\right )^{-1}\) then, by Lemma A.1, there exists \(\hat {z}\) the unique solution of Eq. A.66 with \(g=f 1_{\mathcal {O}}-\frac {1}{\mu _{1}}\hat {p}^{1} 1_{\mathcal {O}_{1}}-\frac {1}{\mu _{2}}\hat {p}^{2} 1_{\mathcal {O}_{2}}, \hat {z}(0)=z^{0}\) and from Eq. A.73 and Eq. A.76, we have

$$ ||\hat{z}||_{K_{2}}\leq C_{1} r $$
(A.77)

where \(C_{1} := C_{1}({\Omega }, \mathcal {O}, \mathcal {O}_{i}, M, a_{0}, a_{1})\).

Now, consider \((\tilde {p}^{1},\tilde {p}^{2})\in Z\) solution of

$$ \left\{\begin{array}{lll} -\tilde{p}^{i}_{t} - a(\hat{z}+\overline{y}) {\Delta} \tilde{p}^{i} = \alpha_{i} (\hat{z}-z_{i,d}) 1_{\mathcal{O}_{id}}& \text{in}& Q,\\ \tilde{p}^{i}(x,t)=0 & \text{on} & {\Sigma},\\ \tilde{p}^{i}(x,T)=0 & \text{in} & {\Omega}, \end{array}\right. $$

satisfying

$$ \begin{array}{@{}rcl@{}} ||\tilde{p}^{i}||_{K_{2}}& \leq & C_{2} \left( ||\hat{z}||_{H^{1}(0,T;L^{2}(\mathcal{O}))}+||z_{id}||_{H^{1}(0,T;L^{2}({\Omega}))} \right)\\ \noalign{}\phantom{} & \leq & C_{2}\left( C_{1} r+||z_{id}||_{H^{1}(0,T;L^{2}({\Omega}))} \right)\\ \noalign{}\phantom{} & \leq &C_{3}, \end{array} $$
(A.78)

where \(C_{3}:= C_{3}({\Omega },\mathcal {O}, \mathcal {O}_{i}, M, ||z_{id}||_{H^{1}(0,T;L^{2}({\Omega }))})\).

In this way, if μ1 and μ2 are sufficiently large, such that

$$C_{3} \leq \frac{r}{2}\left( \frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}\right)^{-1} =R_{0}, $$

then, Λ : ZZ given by \({\Lambda } (\hat {p}^{1},\hat {p}^{2})=(\tilde {p}^{1},\tilde {p}^{2})\) is compact and Λ(BK[0,R0]) ⊂ BK[0,R0]. By Schauder’s Fixed Point Theorem Λ has a fixed point \((\hat {p}^{1},\hat {p}^{2})\) which is, together with \(\hat {z}\), a solution of Eq. 3.14.

Notice that, due to Eqs. A.77 and A.78, the solution \((\hat {z},\hat {p}^{1},\hat {p}^{2})\) satisfies

$$ ||(\hat{z},\hat{p}^{1},\hat{p}^{2})||_{K_{2}\times K_{2} \times K_{2}}\leq C_{0}. $$

The uniqueness can be proved using these last inequality and standard energy estimates.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huaman, D.N. Stackelberg-Nash Controllability for a Quasi-linear Parabolic Equation in Dimension 1D, 2D, or 3D. J Dyn Control Syst (2021). https://doi.org/10.1007/s10883-021-09536-3

Download citation

Keywords

  • Parabolic nonlinear PDEs
  • Controllability
  • Stackelberg-Nash strategies
  • Carleman inequalities

Mathematics Subject Classification (2010)

  • 35B37
  • 93C20
  • 93B05