Skip to main content
Log in

Normal Form for Second Order Differential Equations

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

Applying methods of CR-geometry, we give a solution to the local equivalence problem for second order (smooth or analytic) ordinary differential equations. We do so by presenting a complete normal form (which is smooth or analytic respectively) for this class of ordinary differential equations (ODEs). The normal form is optimal in the sense that it is defined up to the automorphism group of the model (flat) ODE y = 0. For a generic ODE, we also provide a unique (up to a discrete group action) normal form. By doing so, we give a solution to a problem which remained unsolved since the work of Arnold (1988). As another application of the normal form, we obtain distinguished curves associated with a differential equation that we call chains due to their analogy with the chains defined by Chern and Moser (Acta Math. 7;133:219–271).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold V, Vol. 250. Geometrical methods in the theory of ordinary differential equations. 2nd edn. Fundamental Principles of Mathematical Sciences. New York: Springer-Verlag; 1988.

    Book  Google Scholar 

  2. Bagderina Y Y. Equivalence of second-order ordinary differential equations to Painlevé equations. Theoret Math Phys 2015;182(2):211–230.

    Article  MathSciNet  MATH  Google Scholar 

  3. Babich MV, Bordag LA. Projective differential geometrical structure ot the Painlevé equations. J Diff Equ 1999;157(2):452–485.

    Article  MATH  Google Scholar 

  4. Bandle C, Bordag LA. Equivalence classes for Emden equations. Nonlin Anal 2002;50:523–540.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cartan É. Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes II. Ann Scuola Norm Sup Pisa Cl Sci (2) 1932;1(4):333–354.

    MathSciNet  MATH  Google Scholar 

  6. Cartan É. Sur les variétés à connexion projective. Bull Soc Math France 1924; 52:205–241.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chern S S, Moser J K. Real hypersurfaces in complex manifolds. Acta Math 1974;133:219–271.

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarkson P. Peter. Painlevé equationsnonlinear special functions. Orthogonal polynomials and special functions, 331–411, Lecture Notes in Math. Berlin: Springer; 2006, p. 1883.

    Google Scholar 

  9. Dmitrieva V V, Sharipov R A. On the point transformations for the second order differential equations. Electron archive at LANL (solv-int 9703003). 1997:1–14.

  10. Gromak I V, Laine I, Shimomura S., Vol. 28. Painlevé differential equations in the complex plane. Berlin: Walter de Gruyter; 2002.

    Book  MATH  Google Scholar 

  11. Hinkkanen A, Laine I. Solutions of a modified third Painlevé equation are meromorphic. J Anal Math 2001;85(1):323–337.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kamran N, Lamb K G, Shadwick W F. The local equivalence problem for d 2 y/d x 2. J Diff Geom 1985;22(2):139–150.

    Article  Google Scholar 

  13. Kartak V V. Solution of the equivalence problem for the Painlevé IV equation. Theor Math Phys 2012;173(2):1541–1564.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kossovskiy I, Shafikov R. Divergent CR-equivalences and meromorphic differential equations. J Eur Math Soc (JEMS) 2016;18(12):2785–2819.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kossovskiy I, Shafikov R. Analytic differential equations and spherical real hypersurfaces. J Dif Geom 2016;102(1):67—126.

    MathSciNet  MATH  Google Scholar 

  16. Kossovskiy I, Lamel B. On the analyticity of CR-diffeomorphisms. To appear in American Journal of Math. (AJM). Available at arXiv:1408.6711.

  17. Kossovskiy I, Lamel B. New extension phenomena for solutions of tangential Cauchy–Riemann equations. Comm Partial Diff Equ 2016;41(6):925–951.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kruglikov B. Point classification of second order ODEs: Tresse classification revisited and beyond. With an appendix by Kruglikov and V. Lychagin. Abel Symp., 5, Differential equations: geometry, symmetries and integrability. Berlin: Springer; 2009, pp. 199–221.

    Google Scholar 

  19. Ottazzi A, Schmalz G. Normal forms of para-CR hypersurfaces. Differential Geom Appl 2017;52:78–93.

    Article  MathSciNet  MATH  Google Scholar 

  20. Ottazzi A, Schmalz G. Singular multicontact structures. J Math Anal Appl 2016;443(2):1220–1231.

    Article  MathSciNet  MATH  Google Scholar 

  21. Poincaré H. Les fonctions analytiques de deux variables et la représentation conforme. Rend Circ Mat Palermo 1907;23:185–220.

    Article  MATH  Google Scholar 

  22. Segre B. Questioni geometriche legate colla teoria delle funzioni di due variabili complesse. Rendiconti del Seminario di Matematici di Roma, II, Ser 1932;7(2):59–107.

    MATH  Google Scholar 

  23. Sukhov A. Segre varieties and Lie symmetries. Math Z 2001;238(3):483–492.

    Article  MathSciNet  MATH  Google Scholar 

  24. Sukhov A. On transformations of analytic CR-structures. Izv Math 2003;67(2): 303–332.

    Article  MathSciNet  MATH  Google Scholar 

  25. Tresse A. 1896. Determination des invariants ponctuels de l’equation differentielle du second ordre y = ω(x,y,y ). Leipzig.

  26. Yumaguzhin V. Differential invariants of second order ODEs, I. Acta Appl Math 2010;109(1):283–313.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to Sergei Yakovenko for multiple useful discussions held during the preparation of the paper and his valuable suggestions. We also thank Boris Kruglikov for his useful comments on the text. The first author is thankful to Alexander Sukhov for inspiring discussions towards the normal form problem. The first author is supported by the Czech Grant Agency and the Austrian Science Fund (FWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Kossovskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kossovskiy, I., Zaitsev, D. Normal Form for Second Order Differential Equations. J Dyn Control Syst 24, 541–562 (2018). https://doi.org/10.1007/s10883-017-9380-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-017-9380-9

Keywords

Mathematics Subject Classification (2010)

Navigation