Skip to main content
Log in

Hyperbolic Chain Control Sets on Flag Manifolds

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we characterize the hyperbolic chain control sets of a right-invariant control system on a flag manifold of a real semisimple Lie group. Moreover, we provide a formula for the invariance entropy of such sets, applying a recently established result that holds in a more general setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [21], it is falsely claimed that N +(Θ) centralizes \(\mathfrak {n}^{-}_{\Theta }\), which in general is not true.

References

  1. Alves LA, San Martin LAB. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete Contin Dyn Syst 2013;33(4):1247–1273.

    MathSciNet  MATH  Google Scholar 

  2. Bowen R. Topological entropy and Axiom. A. Global Analysis, Proc Sympos Pure Math 1970;14:23–41.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bowen R. Periodic orbits for hyperbolic flows. Amer J Math 1972;94:1–30.

    Article  MathSciNet  MATH  Google Scholar 

  4. Braga Barros CJ, San Martin LAB. Chain transitive sets for flows on flag bundles. Forum Math 2007;19(1):19–60.

    MathSciNet  MATH  Google Scholar 

  5. Colonius F. Minimal bit rates and entropy for exponential stabilization. SIAM J Control Optim 2012;50(5):2988–3010.

    Article  MathSciNet  MATH  Google Scholar 

  6. Colonius F, Kawan C. Invariance entropy for control systems. SIAM J Control Optim 2009;48:1701–1721.

    Article  MathSciNet  MATH  Google Scholar 

  7. Colonius F, Kliemann W. The dynamics of control. Boston: Birkhäuser; 2000.

    Book  MATH  Google Scholar 

  8. Da Silva A. 2014. Invariance entropy for control systems on Lie groups and homogeneous spaces. Doctoral thesis, University of Augsburg and University of Campinas.

  9. Da Silva AJ. Invariance entropy for random control systems. Math Control Signals Systems 2013;25(4):491–516.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hasselblatt B. 2002. Hyperbolic dynamical systems. Handbook of dynamical systems, Vol. 1A. North-Holland, Amsterdam; p. 239–319.

  11. Jurdjevic V. Control systems on Lie groups. J Differential Equations 1972;12: 313–329.

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Silva A, Kawan C. Invariance entropy of hyperbolic control sets. Discrete Cont Dyn Syst A 2016;36(1):97–136.

    Article  MathSciNet  MATH  Google Scholar 

  13. Duistermaat JJ, Kolk JAC, Varadarajan V S. Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups. Compositio Math 1983;49(3):309–398.

    MathSciNet  MATH  Google Scholar 

  14. Helgason S. Differential geometry, Lie groups, and symmetric spaces. New York–London: Academic Press; 1978.

    MATH  Google Scholar 

  15. Kawan C. Invariance entropy for deterministic control systems – an introduction. In: Lecture Notes in Mathematics 2089. Berlin: Springer; 2013.

    Book  MATH  Google Scholar 

  16. Knapp A W. Lie groups beyond an introduction. 2nd ed. In: Progress in Mathematics, 140. Boston: Birkhäuser; 2002.

    Google Scholar 

  17. Nair GN, Evans RJ, Mareels IMY, Moran W. Topological feedback entropy and nonlinear stabilization. IEEE Trans Automat Control 2004;49(9):1585–1597.

    Article  MathSciNet  Google Scholar 

  18. Ott E, Grebogi C, Celso JA. Controlling chaos. Phys Rev Lett 1990;64 (11):1196–1199.

    Article  MathSciNet  MATH  Google Scholar 

  19. San Martin LAB. Invariant control sets on flag manifolds. Math Control Signals Systems 1993;6(1):41–61.

    Article  MathSciNet  MATH  Google Scholar 

  20. San Martin LAB. Order and domains of attraction of control sets in flag manifolds. J Lie Theory 1998;8(2):335–350.

    MathSciNet  MATH  Google Scholar 

  21. San Martin LAB, Seco L. Morse and Lyapunov spectra and dynamics on flag bundles. Ergod Th & Dynam Sys 2010;30(3):893–922.

    Article  MathSciNet  MATH  Google Scholar 

  22. San Martin LAB, Tonelli PA. Semigroup actions on homogeneous spaces. Semigroup Forum 1995;50(1):59–88.

    Article  MathSciNet  MATH  Google Scholar 

  23. Savkin AV. Analysis and synthesis of networked control systems: topological entropy, observability, robustness and optimal control. Automatica J IFAC 2006;42(1): 51–62.

    Article  MathSciNet  MATH  Google Scholar 

  24. Warner G. Harmonic analysis on semi-simple Lie groups. I. New York–Heidelberg: Springer; 1972.

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The results of this paper are essentially based on ideas of the doctoral thesis [8] of the first author. We thank his advisors Fritz Colonius and Luiz San Martin for many fruitful mathematical discussions. The second author also thanks Peter Quast for taking his time to answer many question about semisimple Lie groups and their flag manifolds. The first author was supported by FAPESP scholarship 2013/19756-8 and partially by CAPES grant no. 4229/10-0 and CNPq grant no. 142082/2013-9. The second author was supported by DFG fellowship KA 3893/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.D., Kawan, C. Hyperbolic Chain Control Sets on Flag Manifolds. J Dyn Control Syst 22, 725–745 (2016). https://doi.org/10.1007/s10883-015-9308-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-015-9308-1

Keywords

Mathematics Subject Classification (2010)

Navigation