Skip to main content
Log in

On Araujo’s Theorem for Flows

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We prove that every C 1 generic three-dimensional flow without singularities has either infinitely many sinks or finitely many hyperbolic attractors whose basins form a full Lebesgue measure set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdenur F. Generic robustness of spectral decompositions. Ann Sci É cole Norm Sup. 2003;4(36):213–

    MathSciNet  MATH  Google Scholar 

  2. Abdenur F, Bonatti C, Crovisier S, Diaz L. Generic diffeomorphisms on compact surfaces. FundMath. 2005;187(2):127–159.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves JF, Araújo V, Pacifico MJ, Pinheiro V. On the volume of singular-hyperbolic sets. Dyn Syst. 2007;22(3):249–267.

    Article  MathSciNet  MATH  Google Scholar 

  4. Araujo A. 1988. Existência de atratores hiperbólicos para difeomorfismos de superficies (Portuguese), Preprint IMPA Série F. No 23/88.

  5. Arbieto A, Rojas A, Santiago B. 2013. Existence of attractors, homoclinic tangencies and sectional-hyperbolicity for three-dimensional flows, pp. 8. arXiv: math.DS/1308.1734v1.

  6. Arroyo A, Rodriguez Hertz F. bifurcations, Homoclinic uniform hyperbolicity for three-dimensional flows. Ann Inst H, Poincare´ Anal Non Linéaire. 2003;20(5):805–841.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhatia NP, Szegö GP, Vol. 161. Stability theory of dynamical systems, Die Grundlehren der mathematischenWissenschaften, Band. New York-Berlin: Springer-Verlag; 1970.

  8. Bonatti C, Crovisier S. Récurrence et généricité. Invent Math. 2004;158(1):33–104.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonatti C, Gourmelon N, Vivier T. Perturbations of the derivative along periodic orbits. Ergodic Theory Dynam Sys. 2006;26(5):1307–1337.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonatti C, Li M, Yang D. On the existence of attractors. Trans Amer Math Soc. 2013;365(3):1369–1391.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bowen R, Ruelle D. The ergodic theory of Axiom A flows. Invent Math. 1975;29(3):181–202.

    Article  MathSciNet  MATH  Google Scholar 

  12. Carballo CM, Morales CA, Pacifico MJ. Homoclinic classes for generic C 1 vector fields. Ergodic Theory Dynam Sys. 2003;23(2):403–415.

  13. Crovisier S. Partial hyperbolicity far from homoclinic bifurcations. Adv Math. 2011;226(1):673–726.

    Article  MathSciNet  MATH  Google Scholar 

  14. Franks F. Necessary conditions for stability of diffeomorphisms. Trans Amer Math Soc. 1971;158:301–308.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hasselblatt B, Katok A, Vol. 54. Introduction to the modern theory of dynamical systems (with a supplementary chapter by Katok and Leonardo Mendoza) Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press; 1995.

  16. Hirsch M, Pugh C, Shub M, Vol. 583. Invariant manifolds Lec Not Math. Springer-Verlag; 1977.

  17. Kuratowski K. Topology. Vol. II, New edition, revised and augmented. Translated from the French by A. Kirkor Academic Press, New York-London. Warsaw: Pan´stwowe Wydawnictwo Naukowe Polish Scientific Publishers; 1968.

  18. Kuratowski K. Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski Academic Press, New York-London. Warsaw: Państwowe Wydawnictwo Naukowe; 1966.

  19. Mañé R. On the creation of homoclinic points. Inst Hautes Études Sci Publ Math. 1988;66:139–159.

    Article  MATH  MathSciNet  Google Scholar 

  20. Mañé R, Vol. 8. Ergodic theory and differentiable dynamics. Translated from the Portuguese by Silvio Levy. Ergebnisse derMathematik und ihrer Grenzgebiete (3) [Results inMathematics and Related Areas (3)]. Berlin: Springer-Verlag; 1987.

  21. Mañé R. Oseledec’s theorem from the generic viewpoint, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 1269–1276. Warsaw: PWN; 1984.

  22. Maṅé R. An ergodic closing lemma. Ann Math. 1982;2(116):503–540.

    Article  MATH  MathSciNet  Google Scholar 

  23. Morales CA. Another dichotomy for surface diffeomorphisms. Proc AmerMath Soc. 2009;137(8):2639–2644.

    Article  MathSciNet  MATH  Google Scholar 

  24. Morales CA, Pacifico MJ. A dichotomy for three-dimensional vector fields. Ergodic Theory Dynam Syst. 2003;23(5):1575–1600.

    Article  MathSciNet  MATH  Google Scholar 

  25. Morales CA, PacificoMJ. Lyapunov stability of ω-limit sets. Discret Contin Dyn Syst. 2002;8(3):671–674.

    Article  MathSciNet  MATH  Google Scholar 

  26. Palis J., Takens F, Vol. 35. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Fractal dimensions and infinitely many attractors Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press; 1993.

  27. Potrie R. A proof of the existence of attractors, Preprint: unpublished; 2009.

  28. Potrie R. 2012. Partial hyperbolicity and attracting regions in 3-dimensional manifolds, Thése Pour obtenir le grade de docteur de l’Université de Paris 13 Discipline: Mathématiques Preprint. arXiv: math.DS/1207.1822v1.

  29. Pujals ER, Sambarino M. Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann of Math. 2000;2(151):961–1023.

    Article  MathSciNet  MATH  Google Scholar 

  30. Pujals ER, Sambarino M. On homoclinic tangencies, hyperbolicity, creation of homoclinic orbits and varation of entropy. Nonlinearity 2000;13(3):921–926.

    Article  MathSciNet  MATH  Google Scholar 

  31. Santiago B. Hiperbolicidade Essencial em Superf´ıcies. UFRJ/IM: Portuguese; 2011.

  32. Shub M. Global stability of dynamical systems. With the collaboration of Albert Fathi and Rémi Langevin. Translated from the French by Joseph Christy. New York: Springer-Verlag; 1987.

  33. Wen L. Homoclinic tangencies and dominated splittings. Nonlinearity 2002;15(5):1445–1469.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wen L. On the preperiodic set. Discret Contin Dynam Syst. 2000;6(1):237–241.

    Article  MATH  MathSciNet  Google Scholar 

  35. Wen L. On the C 1 stability conjecture for flows. J. Diff Equat 1996;129(2):334–357.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arbieto.

Additional information

Partially supported by CNPq, FAPERJ and PRONEX/DYN-SYS. from Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbieto, A., Morales, C.A. & Santiago, B. On Araujo’s Theorem for Flows. J Dyn Control Syst 22, 55–69 (2016). https://doi.org/10.1007/s10883-014-9250-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-014-9250-7

Keywords

Mathematics Subject Classifications (2010)

Navigation