Journal of Dynamical and Control Systems

, Volume 21, Issue 3, pp 351–377 | Cite as

Fréchet Generalized Trajectories and Minimizers for Variational Problems of Low Coercivity

  • Manuel Guerra
  • Andrey Sarychev


We address consecutively two problems. First, we introduce a class of so-called Fréchet generalized controls for a multi-input control-affine system with non-commuting controlled vector fields. For each control of the class, one is able to define a unique generalized trajectory, and the input-to-trajectory map turns out to be continuous with respect to the Fréchet metric. On the other side, the class of generalized controls is broad enough to settle the second problem, which is to prove existence of generalized minimizers of Lagrange variational problem with functionals of low (in particular linear) growth. Besides, we study the possibility of Lavrentiev-type gap between the infima of the functionals in the spaces of ordinary and generalized controls. This is an abridged (due to the journal space limitations) version of a more detailed preprint with several proofs, drawings, and examples added, published in > math > arXiv: 1402.0477.


Generalized controls Impulsive controls Non-involutive systems Existence of minimizers Lavrentiev phenomenon 

Mathematics Subject Classifications (2010)

49J15 49N25 93C15 



The research of the first coauthor has been supported by FCT–Fundação para a Ciência e Tecnologia (Portugal) via strategic project PEst-OE/EGE/UI0491/2013; he is grateful to INDAM (Italy) for supporting his visit to the University of Florence in January 2014. The research of the second coauthor has been supported by MIUR (Italy) via national project (PRIN) 200894484E of MIUR (Italy); he is also grateful to CEMAPRE (Portugal) for supporting his research stay at ISEG, University of Lisbon in May 2013.


  1. 1.
    Arutyunov AV, Karamzin DY, Pereira F. Pontryagin’s maximum principle for optimal impulsive control problems. Dokl Math. 2010;81(3):418–421.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Arutyunov AV, Karamzin DY, Pereira F. Pontryagin’s maximum principle for constrained impulsive control problems. Nonlinear anal. 2012;75:1045–1057.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Ball J, Mizel V. One-dimensional variational problems, whose minimizers do not satisfy the Euler-Lagrange equation. Arch Rational Mech Anal. 1985;90:325–388.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bressan A. On differential systems with impulsive controls. Rend Sem Mat Univ Padova. 1987;78:227–235.Google Scholar
  5. 5.
    Bressan A, Rampazzo F. On differential systems with vector-valued impulsive controls. Boll Unione Mat Italiana. 1988;7(2-B):641–656.MathSciNetGoogle Scholar
  6. 6.
    Bressan A, Rampazzo F. Impulsive control systems without commutativity assumptions. J Optim Theory Appl. 1994;81(3):435–457.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cesari L. Optimization—theory and applications. Problems with ordinary differential equations. New York: Springer-Verlag; 1983.MATHGoogle Scholar
  8. 8.
    Durret R. Probability. Theory and examples (2nd ed.):Duxbury Press; 1996.Google Scholar
  9. 9.
    Dykhta VA, Samsonyuk ON. A maximum principle for smooth optimal impulsive control problems with multipoint state constraints. Comput Math Math Phys. 2009;49(6):942–957.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fréchet M. Sur quelques points du calcul fonctionnel. Rendiconti Del Circolo Matematico Di Palermo. 1906;22(1):1–72.Google Scholar
  11. 11.
    Gamkrelidze R. Foundations of optimal control. New York: Plenum Press; 1978.Google Scholar
  12. 12.
    Guerra M. Highly singular L-Q problems: solutions in distribution spaces. J Dyn Cont Syst. 2000;6(2):265–309.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Guerra M, Sarychev A. Existence and Lipschitzian regularity for relaxed minimizers. In: Sarychev A. et al. (ed.), Mathematical Control Theory and Finance: Springer; 2008, pp. 231–250.Google Scholar
  14. 14.
    Krasnoselsky M, Pokrovsky A. Systems with hysteresis. Berlin: Springer-Verlag; 1989.CrossRefGoogle Scholar
  15. 15.
    Leoni G. A first course in Sobolev spaces. Amer Math Soc. 2009.Google Scholar
  16. 16.
    Liu WS, Sussmann HJ. Continuous dependence with respect to the input of trajectories of control-affine systems. SIAM J Control and Optimization 1999;37(3):777–803.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Manià B. Sopra un esempio di Lavrentieff, Boll. Un Mat Ital. 1934;13:146–153.Google Scholar
  18. 18.
    Miller B, Rubinovich E. Impulsive control in continuous and discrete-continuous systems (Foundations of the hybrid systems theory): Springer; 2003.Google Scholar
  19. 19.
    Motta M, Rampazzo F. Nonlinear systems with unbounded controls: a problem of proper extension. NoDEA. 1996;3:191–216.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Orlov Y. Vibrocorrect differential equations with measures. Mat Zametki. 1985; 38:110–119.MathSciNetGoogle Scholar
  21. 21.
    Pereira FL, Silva GN. Necessary conditions of optimality for vector-valued impulsive control systems. Syst Cont Lett. 2000;40:205–215.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Riesz F, -Nagy B Sz. Functional analysis. Blackie & Son Limited; 1956.Google Scholar
  23. 23.
    Rischel RW. An extended pontryagin principle for control systems whose laws contain measures. J SIAM Ser A Cont. 1965;3(2):191–205.Google Scholar
  24. 24.
    Sarychev A. Integral representation for the trajectories of control system with generalized right-hand side. Differ Eq. 1988;24:1021–1031.Google Scholar
  25. 25.
    Sarychev A. First and second-order integral functionals of the calculus of variations which exhibit the Lavrentiev phenomenon. J Dyn Cont Syst. 1997;3:565–588.MATHMathSciNetGoogle Scholar
  26. 26.
    Silva GN, Vinter RB. Measure driven differential inclusions. J Math Anal Appl. 1996;202:727–746.CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Sussmann HJ, Liu WS. Lie bracket extensions and averaging: the single-bracket case. In: ZX Li, JF Canny (ed.), Nonholonomic Motion Planning. Boston: Kluwer; 1993, pp. 109–148.Google Scholar
  28. 28.
    Warga J. Variational problems with unbounded controls. J SIAM Ser A Cont. 1965;3(2):428–438.Google Scholar
  29. 29.
    Warga J. Optimal control of differential and functional equations. New York: Academic; 1972.MATHGoogle Scholar
  30. 30.
    Warga J, Zhu QJ. The equivalence of extremals in different representations of unbounded control problems. SIAM J Cont Optim. 1994;32:1151–1169.CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Young LC. Lectures on the calculus of variations and optimal control theory. New York: Chelsea; 1980.Google Scholar
  32. 32.
    Zavalishchin ST, Sesekin AN. Dynamic impulse systems: theory and applications: Kluwer; 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CEMAPREUniversity of LisbonLisbonPortugal
  2. 2.ISEGUniversity of LisbonLisbonPortugal

Personalised recommendations