Skip to main content
Log in

Geodesics in the Heisenberg group H n with a Lorentzian metric

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

Let \( {\mathbb{H}^n} \) be the Heisenberg group in \( {\mathbb{R}^{2n + 1 }} \) and D be a bracket generating left invariant distribution with a Lorentzian metric, which is a nondegenerate metric of index 1. In this paper, we first study the reachable sets by the time-like future directed curves. Second, we give a complete description of the Hamiltonian geodesics. Third, we compute the time-like conjugate locus of the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Agrachev, El-H. Chakir, El-Alaoui, and J. P. Gauthier, Sub-Riemannian metrics on R 3. Proc. Conf. Canad. Math. Soc. 25 (1998).

  2. A. Agrachev, D. Barilari, and U. Boscain, On the Hausdorff volume in sub-Riemannian geometry. Calculus of Variations and Partial Differential Equations 10.1007/s00526-011-0414-y (2011), 1–34.

  3. A. Agrachev, U. Boscain, J.-P. Gauthier, and F. Rossi, The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256 (2009), No. 8, 2621–2655.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. A. Agrachev, G. Charlot, J. P. A. Gauthier, and V. M. Zakalyukin, On sub-Riemannian caustics and wave fronts for contact distributions in the three-space. J. Dynam. Control Systems 6 (2000), No. 3, 365–395.

    Article  MathSciNet  MATH  Google Scholar 

  5. El-H. Alaoui, J-P. Gauthier, and I. Kupka, Small sub-Riemannian balls in \( {\mathbb{R}^3} \). J. Dynam. Control Sys. 2 (1996), No.3, 359–421.

    Article  MATH  Google Scholar 

  6. R. Beals, B. Gaveau, and P.C. Greiner, Hamilton-Jacobi theory and the Heat Kernal on Heisenberg groups. J. Math. Pures Appl. 79, 7 (2000), 633–689.

    MathSciNet  MATH  Google Scholar 

  7. J.K. Beem, P.E. Ehrlich, and K.l. Easley, Global Lorentzian geometry. Marcel Dekker (1996).

  8. D. C. Chang, I. Markina, and A. Vasiliev, Sub-Lorentzian geometry on anti-de sitter space. J. Math. Pures Appl. 90 (2008), No. 1, 82–110.

    MathSciNet  MATH  Google Scholar 

  9. M. Golubitsky and V. Guillemin, Stable mappings and their singularities. Spinger-Verlag, New York (1973).

    Book  MATH  Google Scholar 

  10. M. Grochowski, Differential properties of the sub-Riemannian distance function. Bull. Polish. Acad. Sci. 50 (2002), No. 1.

    Google Scholar 

  11. M. Grochowski, Geodesics in the sub-Lorentzian geometry. Bull. Polish. Acad. Sci. 50 (2002), No. 2.

    Google Scholar 

  12. M. Grochowski, Normal forms of germs of Contact sub-Lorentzian structures on \( {\mathbb{R}^3} \), Differentiability of the sub-Lorentzian distance function. J. Dynam. Control Sys. 9 (2003), No. 4, 531–547.

    MathSciNet  MATH  Google Scholar 

  13. M. Grochowski, Reachable sets for the Heisenberg sub-Lorentzian structure on \( {\mathbb{R}^3} \), An estimate for the distance function. J. Dynam. Control Sys. 12 (2006), No. 2, 145–160.

    MathSciNet  MATH  Google Scholar 

  14. M. Grochowski, On the Heisenberg sub- Lorentzian Metric on R 3. Geometric Singularity Theory, Banach Center Publications 65 (2004).

  15. M. Gromov. Carnot-Caratheodory spaces seen from within. Progr. Math. 144, Birkhauser, Boston (1996), 79–323.

  16. F. Monroy-Pérez and A. Anzaldo-Meneses, Optimal control on the Heisenberg group. J. Dynam. Control Sys. 5 (1996), No. 4, 473–499.

    Article  Google Scholar 

  17. A. Korolko and I. Markina, Non-Holonomic Lorentzian geometry on some \( \mathbb{H} \)-type groups, (preprint).

  18. R. Montgomery, Singular extremals on Lie groups. Math. Control, Signals and Systems 7(3) (1994), 217–234.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications. Math. Surveys and Monographs 91, American Math. Soc., Providence (2002).

  20. P. Piccione and D.V. Tausk, Variational aspects of the geodesic problem in sub-Riemannian geometry. J. Geometry and Physics. 39 (2001), 183–206.

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu. L. Sachkov, Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim. Calc. Var. 16 (2010), 1018–1039.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. J. Sussmann, An extension of a theorem of Nagano on transitive Lie algebras. Proc. Am. Math. Soc. 45 (1974), 349–356.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Strichartz, Sub-Riemannian geometry. J. Diff. Geom. 24 (1986), 221–263.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiren Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, T., Yang, X. Geodesics in the Heisenberg group H n with a Lorentzian metric. J Dyn Control Syst 18, 479–498 (2012). https://doi.org/10.1007/s10883-012-9156-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-012-9156-1

Key words and phrases

2000 Mathematics Subject Classification

Navigation