Journal of Dynamical and Control Systems

, Volume 18, Issue 3, pp 297–307 | Cite as

Analytic integrability of a modified Michaelis-Menten equation

  • Claudia Valls


In this work we consider the modified Michaelis-Menten equation in biochemistry \( \dot{x} \) = −a(E − y)x + by; \( \dot{y} \) = a(E − y)x − (b + r)y; \( \dot{z} \) = ry: It models the enzyme kinetics. We contribute to the description of the topological structure of its orbits by studying the integrability problem. We prove that a = 0, or r = 0, or E = 0 are the unique values of the parameters for which the system is analytically integrable, and in this case we provide an explicit expression for its first integrals.

Key words and phrases

Analytic integrability Michaelis-Menten equation 

2000 Mathematics Subject Classification

34C05 34A34 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.V. Anosov and V.I. Arnold. Dynamical Systems I. Springer-Verlag, Berlin (1988).MATHCrossRefGoogle Scholar
  2. 2.
    N. N. Bautin. On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type. Math. USSR Sb 100 (1954), 397-413.Google Scholar
  3. 3.
    L. Dai. On the existence, uniqueness and global asymptotic stability of the periodic solution of the modificed Michaelis-Menton Mechanis. J. Diff. Equations 31 (1979), 391-417.CrossRefGoogle Scholar
  4. 4.
    S.D. Furta. On non-integrability of general systems of differential equations. Z. Angew. Math. Phys. 47 (1996), 112-131.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    A. Goldbeter and D. Koshland. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. U.S.A 78 (1981), 6840-6844.MathSciNetCrossRefGoogle Scholar
  6. 6.
    W. Kapteyn. On the midpoints of integrals of differential equations of the first degree. Verh. Kon. Ned. Akad. Wet. Afd. Natuurk. 19 (1911), 1446-1457.MATHGoogle Scholar
  7. 7.
    —, New investigations on the midpoints of integrals of differential equations of the first degree. Verh. Kon. Ned. Akad. Wet. Afd. Natuurk. 20 (1912), 1354-1365.Google Scholar
  8. 8.
    A. M. Liapunov. Probleme general de la stabilite du mouvement. Annals of Mathematics Studies 17, Princeton University Press, Princeton, NJ (1949).Google Scholar
  9. 9.
    W. Li, J. Llibre and X. Zhang. Local first integrals of differential systems and diffeomorphisms. Z. Angew. Math. Phys. 54 (2003), 1-21.MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Joyal and C. Rousseau. Saddle quantities and applications. J. Differential Equations 78 (1989), 374-399.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    L. Michaelis and M. Menten. Biochem. Z. 49 (1913), 333.Google Scholar
  12. 12.
    R. Moussu. Symetrie et forme normale des centres et foyers degeneres. Ergod. Th. & Dynam. Sys. 2 (1982), 241-251.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    H. Poincaré. Memoire sur les courbes definies par les equations differentielles. Oeuvreus de Henri Poincaré, I. Gauthiers − Villars, Paris (1951), 95{114.Google Scholar
  14. 14.
    C. Valls. Liouvillian integrability of a modified Michaelis-Menten equation. Preprint.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Departamento de MatemáticaInstituto Superior TécnicoLisboaPortugal

Personalised recommendations