Skip to main content
Log in

The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We study the tangential case in two-dimensional almost-Riemannian geometry and analyze the connection with the Martinet case in sub-Riemannian geometry. We calculate estimates of the exponential map which allow us to describe the conjugate locus and the cut locus at a tangency point. We prove that this tangency point generically accumulates at the tangency point as an asymmetric cusp whose branches are separated by the singular set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Agrachev, B. Bonnard, M. Chyba, and I. Kupka, Sub-Riemannian sphere in Martinet flat case. ESAIM Control Optim. Calc. Var. 4 (1997), 377–448.

    Article  MathSciNet  Google Scholar 

  2. A. Agrachev, U. Boscain G. Charlot, R. Ghezzi, and M. Sigalotti, Twodimensional almost-Riemannian structures with tangency points. Ann. Inst. H. Poincaré. Anal. Non Linéaire 27 (2010), 793–807.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Agrachev, U. Boscain, and M. Sigalotti, A Gauss–Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discr. Cont. Dynam. Systems 20 (2008), No. 4, 801–822.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Bellaïche, The tangent space in sub-Riemannian geometry. J. Math. Sci. 83 (1997), No. 4, 461–476.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Bonnard and J.-B. Caillau, Singular metrics on the two-sphere in space mechanics. Preprint (2008), HAL, Vol. 00319299, pp. 1–25.

  6. B. Bonnard, J.-B. Caillau, R. Sinclair, and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. H. Poincaré. Anal. Non Linéaire 26 (2009), No. 4, 1081–1098.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Bonnard and M. Chyba, Méthodes géométriques et analytiques pour étudier l’application exponentielle, la sphére et le front d’onde en géométrie SR dans le cas Martinet. ESAIM Control Optim. Calc. Var. 4 (1999), 245–334.

    Article  MATH  MathSciNet  Google Scholar 

  8. U. Boscain and M. Sigalotti, High-order angles in almost-Riemannian geometry. Act. Sémin. Théorie Spectr. Géom., 25 (2008), 41–54.

    MathSciNet  Google Scholar 

  9. J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus. Trans. Amer. Math. Soc. 353 (2001), No. 1, 21–40.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes. Interscience Publ. John Wiley and Sons, New York–London (1962).

  11. L. Rifford, and E. Trélat, Morse–Sard-type results in sub-Riemannian geometry. Math. Ann. 332 (2005), No. 1, 145–159.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bonnard.

Additional information

G. Janin was supported by DGA/D4S/MRIS, under the supervision of J. Blanc-Talon, DGA/D4S/MRIS, Responsable de Domaine Ingénierie de l’Information. B. Bonnard and G. Charlot were supported by the ANR project GCM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnard, B., Charlot, G., Ghezzi, R. et al. The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry. J Dyn Control Syst 17, 141–161 (2011). https://doi.org/10.1007/s10883-011-9113-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-011-9113-4

Key words and phrases

2000 Mathematics Subject Classification

Navigation