Journal of Dynamical and Control Systems

, Volume 16, Issue 4, pp 495–515 | Cite as

Interior and Analytic Stabilization of the Wave Equation over a Cylinder

  • N. Belghith
  • A. Moulahi


We analyze the analytic stabilization of the wave equation on a cylinder subject to an interior dissipation that does not satisfy the classical geometric control condition BLR. For this model, we prove that the space of exponential stabilized functions is lower than the whole energy space. We use spectral properties to find the set of functions that can be stabilized. We define a constant α S which gives an estimate for the analyticity required for an initial data to hold in the space of stabilized functions.

2000 Mathematics Subject Classification

93-xx 93DXX 93D15 

Key words and phrases

Stabilization analytic observability inequality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Allibert, Analytic controllability of the wave equation over a cylinder. ESAIM: Control Optim. Calc. Var. 4 (1999), 177–207.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    K. Ammari, Stabilisation d’un modèle d’interaction fluide-structure. Ann. Fac. Sci. Toulouse Math. 10 (2001), 225–254.MATHMathSciNetGoogle Scholar
  3. 3.
    K. Ammari, A. Henrot, and M. Tucsnak. Asymptotic behaviour of the solution and optimal location of the actuator for the pointwise stabilisation of a string. Asympt. Anal. 28 (2001), 215–240.MATHMathSciNetGoogle Scholar
  4. 4.
    K. Ammari, Z. Liu, and M. Tucsnak, Decay rates for a beam with pointwize force and moment feedback. Math. Control Signals Systems 15 (2002), 229–255.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    K. Ammari and S. Nicaise, Polynomial and analytic stabilization of a weave equation coupled with a Euler–Bernoulli beam. To appear in Math. Meth. Appl. Sci.Google Scholar
  6. 6.
    K. Ammari and A. Saïdi, Decay rates at low and high frequencies for a plates equation with feedback concentrated in interior curves. Z. Angew. Math. Math. Phys. 57 (2006), 832–846.MATHCrossRefGoogle Scholar
  7. 7.
    _____, Pointwise stabilization of a hybrid system and optimal location of actuator. Appl. Math. Optim. 56 (2007), 105–130.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    K. Ammari and M. Tucsnak, Stabilisation of Bernoulli–Euler beams by means of pointwise feedback force. SIAM J. Control Optim. 39 (2000), 1160–1181.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    _____, Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM Control Optim. Calc. Var. 6 (2001), 361–386.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Bamberger, J. Rauch, and M. Taylor, A model for harmonics on stringed instruments. Arch. Rat. Mech. Anal. 79 (1982), 270–290.CrossRefMathSciNetGoogle Scholar
  11. 11.
    C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficent condition for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 305 (1992), 1024–1065.CrossRefMathSciNetGoogle Scholar
  12. 12.
    C. Dafermos, Asymptotic bihavior of solutions of evolutions equations. In: Nonlinear evolution equations (M. G. Grandall, Ed.), Academic Press, New York (1978), pp. 103–123.Google Scholar
  13. 13.
    C. Dafermos and M. Selmrod, Asymptotic behavior of nonlinear contraction semi-groups. J. Differ. Eqs. 13 (1973), 97–106.MATHGoogle Scholar
  14. 14.
    A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations. J. Differ. Eqs. 59 (1985), 145–154.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portug. Math. 46 (1989), 245–258.MATHMathSciNetGoogle Scholar
  16. 16.
    S. Jaffard, M. Tucsnak, and E. Zuazua, Singular internal stabilization of the wave equation. J. Differ. Eqs. 145 (1998), 184–215.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    G. Lebeau, Control for hyperbolic equations. Journées “Èquations aux dèrivèes partialles,” Saint Jean de Monts, 1992. Ecole Polytechnique, Palaiseau (1992).Google Scholar
  18. 18.
    _____, Fonctions harmoniques et spectre singulier. Ann. Sci. Ecole Norm. Sup. 13 (1980), 269–291.MATHMathSciNetGoogle Scholar
  19. 19.
    _____, Contrôle analytique 1: estimations a priori. Duke Math. J. 60 (1992), 1–30.CrossRefMathSciNetGoogle Scholar
  20. 20.
    J.-L. Lions, Contrôlabilitè exacte des systèmes distribuès. Masson, Paris (1988).Google Scholar
  21. 21.
    F. Macia and E. Zuazua, On the lack of controllability of wave equations: A Gaussian beam approach. Asympt. Anal. 32 (2002), 1–26.MATHMathSciNetGoogle Scholar
  22. 22.
    S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Control Optim. 35 (1997), 1614–1638.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    A. Zygmund, Trignometric series. Cambridge Univ. Press (1968).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut Supérieur des Sciences Appliquées et de Technologie de SousseSousseTunisie
  2. 2.Département de MathématiquesFaculté des Sciences de MonastirMonastirTunisie

Personalised recommendations