Journal of Dynamical and Control Systems

, Volume 15, Issue 1, pp 133–156 | Cite as

Regions Where the Exponential Map at Regular Points of Sub-Riemannian Manifolds is a Local Diffeomorphism

  • Marcos M. Diniz
  • José M. M. Veloso


For a k-step sub-Riemannian manifold which admits a bracket generating vector at a point, we describe a region near the point where the exponential map is a local diffeomorphism. This is proved by taking the Taylor series of the exponential map and calculating the first nonzero term, which has order \( 2{\left( {{{\mathcal{D}}}_{{{\mathcal{H}}}} - n} \right)} \), where n is the topological dimension and \( {{\mathcal{D}}}_{{{\mathcal{H}}}} \) is the Hausdorff dimension of the metric space associated to the sub-Riemannian manifold.

Key words and phrases

Sub-Riemannian manifolds k-step exponential map Taylor series singularities of wave front set 

2000 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dynam. Control Systems 2 (1996), 321–358.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. A. Agrachev, B. Bonnard, M. Chyba, and I. Kupka, Sub-riemannian sphere in martinet flat case. J. ESAIM Control, Optim. Calc. Variations 2 (1997), 377–448.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Bellaïche and J.-J. Risler (eds.), Sub-Riemannian geometry. Progr. Math. 144, Birkhäuser (1996).Google Scholar
  4. 4.
    R. L. Bryant and L. Hsu, Rigidity of integral curves of rank two distributions. Invent. Math. 114 (1993), No. 2, 435–461.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    U. Hamenstädt, Some regularity theorems for Carnot–Carathéodory metrics. J. Differ. Geom. 32 (1990), No. 3, 819–850.MATHGoogle Scholar
  6. 6.
    L. Hsu, Calculus of variations via the Griffiths formalism. J. Differ. Geom. 36 (1991), No. 3, 551–591.Google Scholar
  7. 7.
    I. Kupka, Géometrie sous-riemannienne. Sémin. Bourbaki, 48ème année 817 (1995/96).Google Scholar
  8. 8.
    W. Liu and H. J. Sussmann, Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Amer. Math. Soc. 118 (1995).Google Scholar
  9. 9.
    J. Mitchel, On Carnot–Carathéodory metrics. J. Differ. Geom. 21 (1985), No. 1, 35–45.Google Scholar
  10. 10.
    R. Montgomery, Abnormal minimizers. SIAM J. Control Optim. 32 (1994), No. 6, 1605–1620.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    _____, A tour of sub-Riemannian geometries, their geodesics and applications. Math. Surv. Monogr. 91, Amer. Math. Soc. (2002).Google Scholar
  12. 12.
    R. S. Strichartz, Sub-Riemannian geometry. J. Differ. Geom. 24 (1986), No. 2, 221–263.MATHMathSciNetGoogle Scholar
  13. 13.
    _____, Corrections to “sub-Riemannian geometry.” J. Differ. Geom. 30 (1989), No. 2, 595–596.MathSciNetGoogle Scholar
  14. 14.
    R. Vein and P. Dale, Determinants and their applications in mathematical physics. Appl. Math. Sci. 134, Springer-Verlag (1999).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculdade de MatemáticaUniversidade Federal do ParáBelém, ParaBrazil

Personalised recommendations