Skip to main content
Log in

Regions Where the Exponential Map at Regular Points of Sub-Riemannian Manifolds is a Local Diffeomorphism

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

For a k-step sub-Riemannian manifold which admits a bracket generating vector at a point, we describe a region near the point where the exponential map is a local diffeomorphism. This is proved by taking the Taylor series of the exponential map and calculating the first nonzero term, which has order \( 2{\left( {{{\mathcal{D}}}_{{{\mathcal{H}}}} - n} \right)} \), where n is the topological dimension and \( {{\mathcal{D}}}_{{{\mathcal{H}}}} \) is the Hausdorff dimension of the metric space associated to the sub-Riemannian manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dynam. Control Systems 2 (1996), 321–358.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. A. Agrachev, B. Bonnard, M. Chyba, and I. Kupka, Sub-riemannian sphere in martinet flat case. J. ESAIM Control, Optim. Calc. Variations 2 (1997), 377–448.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Bellaïche and J.-J. Risler (eds.), Sub-Riemannian geometry. Progr. Math. 144, Birkhäuser (1996).

  4. R. L. Bryant and L. Hsu, Rigidity of integral curves of rank two distributions. Invent. Math. 114 (1993), No. 2, 435–461.

    Article  MATH  MathSciNet  Google Scholar 

  5. U. Hamenstädt, Some regularity theorems for Carnot–Carathéodory metrics. J. Differ. Geom. 32 (1990), No. 3, 819–850.

    MATH  Google Scholar 

  6. L. Hsu, Calculus of variations via the Griffiths formalism. J. Differ. Geom. 36 (1991), No. 3, 551–591.

    Google Scholar 

  7. I. Kupka, Géometrie sous-riemannienne. Sémin. Bourbaki, 48ème année 817 (1995/96).

  8. W. Liu and H. J. Sussmann, Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Amer. Math. Soc. 118 (1995).

  9. J. Mitchel, On Carnot–Carathéodory metrics. J. Differ. Geom. 21 (1985), No. 1, 35–45.

    Google Scholar 

  10. R. Montgomery, Abnormal minimizers. SIAM J. Control Optim. 32 (1994), No. 6, 1605–1620.

    Article  MATH  MathSciNet  Google Scholar 

  11. _____, A tour of sub-Riemannian geometries, their geodesics and applications. Math. Surv. Monogr. 91, Amer. Math. Soc. (2002).

  12. R. S. Strichartz, Sub-Riemannian geometry. J. Differ. Geom. 24 (1986), No. 2, 221–263.

    MATH  MathSciNet  Google Scholar 

  13. _____, Corrections to “sub-Riemannian geometry.” J. Differ. Geom. 30 (1989), No. 2, 595–596.

    MathSciNet  Google Scholar 

  14. R. Vein and P. Dale, Determinants and their applications in mathematical physics. Appl. Math. Sci. 134, Springer-Verlag (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos M. Diniz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diniz, M.M., Veloso, J.M.M. Regions Where the Exponential Map at Regular Points of Sub-Riemannian Manifolds is a Local Diffeomorphism. J Dyn Control Syst 15, 133–156 (2009). https://doi.org/10.1007/s10883-008-9054-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-008-9054-8

Key words and phrases

2000 Mathematics Subject Classification

Navigation