Advertisement

Suboptimal Solution of a Cheap Control Problem for Linear Systems with Multiple State Delays

  • Valery Y. Glizer
Original Article

Abstract.

A finite-horizon linear-quadratic optimal control problem with multiple pointwise and distributed state delays in the dynamics is considered. The control cost in the performance index is small with respect to the state cost. An asymptotic solution of the singularly perturbed set of Riccati-type functional-differential equations, associated with the original control problem by the optimality conditions, is constructed and justified. Based on this solution, two types of suboptimal feedback control for the original problem are derived. These suboptimal controls are justified for two classes of the initial condition for the state variable.

Key words and phrases.

System with multiple pointwise and distributed state delays cheap control problem Riccati-type functional-differential equations singular perturbations asymptotic solution suboptimal feedback control 

References

  1. 1.
    1. D. J. Bell and D. H. Jacobson, Singular optimal control problems. Academic Press, New York (1975).MATHGoogle Scholar
  2. 2.
    2. M. U. Bikdash, A. H. Nayfeh, and E. M. Cliff, Singular perturbation of the time-optimal soft-constrained cheap-control problem. IEEE Trans. Automat. Control 38 (1993), 466–469.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    3. J. H. Braslavsky, M. M. Seron, D. Q. Mayne, and P. V. Kokotovic, Limiting performance of optimal linear filters. Automatica 35 (1999), 189–199.CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    4. J. H. Braslavsky, R. H. Middleton, and J. S. Freudenberg, Cheap control performance of a class of nonright-invertible nonlinear systems. IEEE Trans. Automat. Control 47 (2002), 1314–1319.CrossRefMathSciNetGoogle Scholar
  5. 5.
    5. M. E. Campbell and E. F. Crawley, Asymptotic linear quadratic control for lightly damped structures. J. Guidance Control Dynamics 19 (1996), 969–972.CrossRefMATHGoogle Scholar
  6. 6.
    6. D. J. Clements and B. D. O. Anderson, Singular optimal control: The linear-quadratic problem. Lect. Notes Control Inform. Sci. 5 (1978).MathSciNetGoogle Scholar
  7. 7.
    7. M. G. Dmitriev, On a class of singularly perturbed problems of optimal control. J. Appl. Math. Mech. 42 (1978), 238–242.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    8. B. A. Francis, The optimal linear-quadratic time-invariant regulator with cheap control. IEEE Trans. Automat. Control 24 (1979), 616–621.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    9. B. A. Francis and K. Glover, Bounded peaking in the optimal linear regulator with cheap control. IEEE Trans. Automat. Control 23 (1978), 608–617.CrossRefMATHGoogle Scholar
  10. 10.
    10. B. Friedland, Limiting forms of optimum stochastic linear regulators. Proc. Joint Automat. Control Conf. (1970), 212–220.MathSciNetGoogle Scholar
  11. 11.
    11. R. Gabasov and F. M. Kirillova, Singular optimal controls [in Russian]. Nauka, Moscow (1973).Google Scholar
  12. 12.
    12. V. Y. Glizer, Asymptotic behaviour of the solution of a singularly perturbed Cauchy problem arising in the theory of linear optimal filtering. Izv. Vyssh. Uchebn. Zaved. Mat. (1984), No. 12, 55–58.MathSciNetGoogle Scholar
  13. 13.
    13. ——, Asymptotics of solution of the Cauchy problem for the Riccati matrix differential equation with two small parameters. Differ. Uravn. 23 (1987), 517–518.MATHGoogle Scholar
  14. 14.
    14. ——, Asymptotic solution of a linear quadratic optimal control problem with delay in state and cheap control. Research Report TAE No. 787, Technion-Israel Institute of Technology (1996).Google Scholar
  15. 15.
    15. —, Asymptotic solution of a cheap control problem with state delay. Dynam. Control 9 (1999), 339–357.MATHMathSciNetGoogle Scholar
  16. 16.
    16. ——, Blockwise estimate of the fundamental matrix of linear singularly perturbed differential systems with small delay and its application to uniform asymptotic solution. J. Math. Anal. Appl. 278 (2003), 409–433.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    17. V. I. Gurman, Degenerate optimal control problems [in Russian]. Nauka, Moscow (1977).Google Scholar
  18. 18.
    18. A. Ichikawa, Quadratic control of evolution equations with delays in control. SIAM J. Control Optim. 20 (1982), 645–668.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    19. A. Jameson and R. E. O'Malley, Jr., Cheap control of the time-invariant regulator. Appl. Math. Optim. 1 (1974/75), 337–354.MathSciNetGoogle Scholar
  20. 20.
    20. V. B. Kolmanovskii and T. L. Maizenberg, Optimal control of stochastic systems with aftereffect. Automat. Remote Control 34 (1973), 39–52.MathSciNetMATHGoogle Scholar
  21. 21.
    21. A. G. Kremlev, Asymptotic properties of a set of trajectories of a singularly perturbed system in an optimal control problem. Automat. Remote Control 54 (1994), 1353–1367.MathSciNetGoogle Scholar
  22. 22.
    22. G. A. Kurina, On a degenerate optimal control problem and singular perturbations. Sov. Math. Dokl. 18 (1977), 1452–1456.MATHGoogle Scholar
  23. 23.
    23. H. J. Kushner and D. I. Barnea, On the control of a linear functionaldifferential equation with quadratic cost. SIAM J. Control 8 (1970), 257–272.MathSciNetMATHGoogle Scholar
  24. 24.
    24. H. Kwakernaak and R. Sivan, The maximally achievable accuracy of linear optimal regulators and linear optimal filters. IEEE Trans. Automat. Control 17 (1972), 79–86.MathSciNetMATHGoogle Scholar
  25. 25.
    25. P. J. Moylan and B. D. O. Anderson, Nonlinear regulator theory on an inverse optimal control problem. IEEE Trans. Automat. Control 18 (1973), 460–465.CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    26. R. E. O'Malley, Jr. and A. Jameson, Singular perturbations and singular arcs, I. IEEE Trans. Automat. Control 20 (1975), 218–226.CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    27. ——, Singular perturbations and singular arcs, II. IEEE Trans. Automat. Control 22 (1977), 328–337.CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    28. J. O'Reilly, Partial cheap control of the time-invariant regulator. Int. J. Control 37 (1983), 909–927.MATHMathSciNetGoogle Scholar
  29. 29.
    29. A. Sabery and P. Sannuti, Cheap and singular controls for linear quadratic regulators. IEEE Trans. Automat. Control 32 (1987), 208–219.MathSciNetGoogle Scholar
  30. 30.
    30. P. Sannuti and H. Wason, Multiple time-scale decomposition in cheap control problems — singular control. IEEE Trans. Automat. Control 30 (1985), 633–644.CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    31. M. M. Seron, J. H. Braslavsky, P. V. Kokotovoc, and D. Q. Mayne, Feedback limitations in nonlinear systems: from Bode integrals to cheap control. IEEE Trans. Automat. Control 44 (1999), 829–833.CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    32. V. Turetsky and V. Y. Glizer, Robust state-feedback controllability of linear systems to a hyperplane in a class of bounded controls. J. Optim. Theory Appl. 123 (2004), 639–667.CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    33. A. B. Vasil'eva and M. G. Dmitriev, Determination of the structure of a generalized solution of a nonlinear optimal control problem. Sov. Math. Dokl. 21 (1980), 104–108.MATHGoogle Scholar
  34. 34.
    34. A. B. Vasil'eva and M. V. Faminskaya, An investigation of a nonlinear optimal control problem by the methods of singular perturbation theory. Sov. Math. Dokl. 23 (1981), 440–443.MATHGoogle Scholar
  35. 35.
    35. A. B. Vasil'eva, V. F. Butuzov, and L. V. Kalachev, The boundary function method for singular perturbation problems, SIAM Books, Philadelphia (1995).MATHGoogle Scholar
  36. 36.
    36. R. A. Yackel and P. V. Kokotovic, A boundary layer method for the matrix Riccati equation. IEEE Trans. Automat. Control 18 (1973), 17–24.CrossRefMathSciNetMATHGoogle Scholar
  37. 37.
    37. K. D. Young, P. V. Kokotovic, and V. I. Utkin, A singular perturbation analysis of high-gain feedback systems. IEEE Trans. Automat. Control 22 (1977), 931–938.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations