On sufficient topological indices conditions for properties of graphs

Abstract

In this paper, we present sufficient conditions on eccentric connectivity index, eccentric distance sum and connective eccentricity index for graphs to be k-hamiltonian, k-edge-hamiltonian or k-path-coverable.

This is a preview of subscription content, access via your institution.

References

  1. Bondy JA, Chvátal V (1976) A method in graph theory. Discrete Math 15:111–135

    MathSciNet  Article  Google Scholar 

  2. Bondy JA, Murty USR (2008) Graph Theory, Grad Texts in Math, vol 244. Springer, New York

    Google Scholar 

  3. Chvátal V (1972) On Hamiltons ideals. J Combin Theory Ser B 12:163–168

    MathSciNet  Article  Google Scholar 

  4. Dobrynin AA, Entringer R, Gutman I (2001) Wiener index of trees: theory and applications. Acta Appl Math 66:211–249

    MathSciNet  Article  Google Scholar 

  5. Dobrynin AA, Gutman I, Klavžar S, Žigert P (2002) Wiener index of hexagonal systems. Acta Appl Math 72:247–294

    MathSciNet  Article  Google Scholar 

  6. Feng LH, Zhu XM, Liu WJ (2017) Wiener index, Harary index and graph properties. Discrete Appl Math 223:72–83

    MathSciNet  Article  Google Scholar 

  7. Gupta S, Singh M, Madan AK (2000) Connective eccentricity index: a novel topological descriptor for predicting biological activity. J Mol Graph Model 18:18–25

    Article  Google Scholar 

  8. Gupta S, Singh M, Madan AK (2002) Eccentric distance sum: A novel graph invariant for predicting biological and physical properties. J Math Anal Appl 275:386–401

    MathSciNet  Article  Google Scholar 

  9. Hua HB, Ning B (2017) Wiener index, Harary index and Hamiltonicity of graphs. MATCH Commun Math Comput Chem 78:153–162

    MathSciNet  Google Scholar 

  10. Hua HB, Wang ML (2013) On Harary index and traceable graphs. MATCH Commun Math Comput Chem 70:297–300

    MathSciNet  MATH  Google Scholar 

  11. Ilić A, Yu GH, Feng LH (2011) On the eccentric distance sum of graphs. J Math Anal Appl 381:590–600

    MathSciNet  Article  Google Scholar 

  12. Kronk HV (1969) A note on \(k\)-path hamiltonian graphs. J Combin Theory 7:104–106

    MathSciNet  Article  Google Scholar 

  13. Kuang MJ, Huang GH, Deng HY (2016) Some sufficient conditions for Hamiltonian property in terms of Wiener-type invariants. Proc Indian Acad Sci (Math Sci) 126:1–9

    MathSciNet  Article  Google Scholar 

  14. Lesniak L (1976) On \(n\)-hamiltonian graphs. Discrete Math 14:165–169

    MathSciNet  Article  Google Scholar 

  15. Liu RF, Du X, Jia HC (2017) Some observations on Harary index and traceable graphs. MATCH Commun Math Comput Chem 77:195–208

    MathSciNet  Google Scholar 

  16. Liu RF, Du X, Jia HC (2016) Wiener index on traceable and Hamiltonian graphs. Bull Aust Math Soc 94:362–372

    MathSciNet  Article  Google Scholar 

  17. Plesník J (1984) On the sum of all distances in a graph or diagraph. J Graph Theory 8:1–21

    MathSciNet  Article  Google Scholar 

  18. Sharma V, Goswami R, Madan AK (1997) Eccentric connectivity index: a novel highly discriminating topological descriptor for structrue property and structure activity studies. J Chem Inf Comput Sci 37:273–282

    Article  Google Scholar 

  19. Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20

    Article  Google Scholar 

  20. Yang LH (2013) Wiener index and traceable graphs. Bull Aust Math Soc 88:380–383

    MathSciNet  Article  Google Scholar 

  21. Yu GH, Feng LH, Ilić A (2011) On the eccentric distance sum of trees and unicyclic graphs. J Math Anal Appl 375:99–107

    MathSciNet  Article  Google Scholar 

  22. Yu GH, Qu H, Tang L, Feng LH (2014) On the connecive eccentricity index of trees and unicyclic graphs with given diameter. J Math Aanl Appl 420:1776–1786

    Article  Google Scholar 

  23. Zhou B, Du Z (2010) On eccentric connectivity incex. MATCH Commun Math Comput Chem 63:181–198

    MathSciNet  MATH  Google Scholar 

  24. Zhou QN, Wang LG, Lu Y (2018a) Wiener index and Harary index on Hamilton-connected graphs with large minimum degree. Discrete Appl Math 247:180–185

    MathSciNet  Article  Google Scholar 

  25. Zhou QN, Wang LG, Lu Y (2019) Wiener-type invariants and Hamiltonian properties of graphs. Filomat 33:4045–4058

    MathSciNet  Article  Google Scholar 

  26. Zhou QN, Wang LG, Lu Y (2018b) Wiener-type invariants on graph properties. Filomat 32:489–502

    MathSciNet  Article  Google Scholar 

  27. Zhu XM, Feng LH, Liu MM, Liu WJ, Hu YQ (2017) Some topological indices and graph properties. Trans Comb 6:51–65

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the anonymous referees for the valuable comments and suggestions, which improved the presentation of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yong Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundations of China (No. 11901253), the Natural Science Foundation for Colleges and Universities in Jiangsu Province of China (No. 19KJB110009), and the Science Foundation of Jiangsu Normal University (No. 18XLRX021).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhou, Q. On sufficient topological indices conditions for properties of graphs. J Comb Optim 41, 487–503 (2021). https://doi.org/10.1007/s10878-021-00700-w

Download citation

Keywords

  • K-hamiltonian
  • K-edge-hamiltonian
  • K-path-coverable
  • Topological indices

Mathematics Subject Classification

  • 05C50
  • 05A18
  • 05C40