A multi-objective simulated annealing to solve an identical parallel machine scheduling problem with deterioration effect and resources consumption constraints

Abstract

Production systems are subject to machine deterioration and resource consumption constraints. The deterioration increases the processing time which leads to an increase in resource consumption. In this study, we investigate and model the behavior of a parallel machine scheduling problem with respect to the processing time. The machine is subject to deterioration and includes two resource consumption constraints. The first resource R1 controls the processing time so that additional amounts of R1 decrease the processing time. The second R2 is controlled by the actual processing time so that R2 consumption is a linear function of the actual processing time. The increment of R1 consumption leads to processing time and so R2 decrement. Solving this problem consists in finding the optimal schedule that will minimize both makespan and resources cost. This paper provides a mathematical programming model. In fact, due to the deterioration effect and the two resource consumptions, solving such a problem may be very difficult and requires a large computational time. In this paper, we introduce a multi objective simulated annealing (MOSA) in order to solve the combinatorial optimization problem related to finding the best combination (machine, job, position, R1). Literally the best jobs assignment and resources allocation so that makespan and resources cost are minimized. In order to improve the quality of the results we also developed a 2-steps algorithm by decomposing the original problem into two sub problems: an assignment problem and a resources allocation problem. Some simulations were performed to analyze the performances of the two algorithms. The results show that the 2-steps algorithm is very efficient and outperforms MOSA.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alidaee B, Womer N (1999) Scheduling with time dependent processing times: review and extensions. J Oper Res Soc 50:711–720

    Article  Google Scholar 

  2. Browne S, Yechiali U (1990) Scheduling deteriorating jobs on a single processors. Oper Res Int Journal 38(3):495–498

    Article  Google Scholar 

  3. Chen Z-L (2004) Simultaneous job scheduling and resource allocation on parallel machines. Ann Oper Res 129:135–153. https://doi.org/10.1023/B:ANOR.0000030685.31167.11

    MathSciNet  Article  MATH  Google Scholar 

  4. Cheng TCE, Hsu C-J, Yang D-L (2011) Unrelated parallel-machine scheduling with deteriorating maintenance activities. Comput Ind Eng 60:602–605. https://doi.org/10.1016/j.cie.2010.12.017

    Article  Google Scholar 

  5. Chung BD, Kim BS (2016) A hybrid genetic algorithm with two-stage dispatching heuristic for a machine scheduling problem with step-deteriorating jobs and rate-modifying activities. Comput Ind Eng 98:113–124. https://doi.org/10.1016/j.cie.2016.05.028

    Article  Google Scholar 

  6. Collette Y, Siarry P (2002) Optimisation multiobjectif. Eyrolles, Paris

    Google Scholar 

  7. Daniels Richard L, Barbara JH, Joseph BM (1996) Scheduling parallel manufacturing cells with resource flexibility. Manage Sci 42:1260–1276

    Article  Google Scholar 

  8. Daniels RL, Hua SY, Webster S (1999) Heuristics for parallel-machine fexible-resource scheduling problems with unspecified job assignment. Comput Oper Res 143–155

  9. Edis EB, Oguz C (2012) Parallel machine scheduling with flexible resources. Comput Ind Eng 63:433–447. https://doi.org/10.1016/j.cie.2012.03.018

    Article  Google Scholar 

  10. Fanjul-Peyro L, Perea F, Ruiz R (2017) Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources. Eur J Oper Res 260:482–493. https://doi.org/10.1016/j.ejor.2017.01.002

    MathSciNet  Article  MATH  Google Scholar 

  11. Gara-Ali A, Finke G, Espinouse M-L (2016) Parallel-machine scheduling with maintenance: praising the assignment problem. Eur J Oper Res 252:90–97. https://doi.org/10.1016/j.ejor.2015.12.047

    MathSciNet  Article  MATH  Google Scholar 

  12. Gawiejnowicz S, Lin BMT (2010) Scheduling time-dependent jobs under mixed deterioration. Appl Math Comput 216:438–447. https://doi.org/10.1016/j.amc.2010.01.037

    MathSciNet  Article  MATH  Google Scholar 

  13. Grigoriev A, Sviridenko M, Uetz M (2007) Machine scheduling with resource dependent processing times. Math Program 110:209–228. https://doi.org/10.1007/s10107-006-0059-3

    MathSciNet  Article  MATH  Google Scholar 

  14. Hsieh P-H, Yang S-J, Yang D-L (2015) Decision support for unrelated parallel machine scheduling with discrete controllable processing times. Appl Soft Comput 30:475–483. https://doi.org/10.1016/j.asoc.2015.01.028

    Article  Google Scholar 

  15. Huang X, Wang M-Z (2011) Parallel identical machines scheduling with deteriorating jobs and total absolute differences penalties. Appl Math Model 35:1349–1353. https://doi.org/10.1016/j.apm.2010.09.013

    MathSciNet  Article  MATH  Google Scholar 

  16. Janiak A (1998) Minimization of the makespan in a two-machine problem under given resource constraints. Eur J Oper Res 107:325–337

    Article  Google Scholar 

  17. Janiak A, Kovalyov MY (1996) Single machine scheduling subject to deadlines and resource dependent processing times. Eur J Oper Res 94:284–291

    Article  Google Scholar 

  18. Ji M, Cheng TCE (2007) An FPTAS for scheduling jobs with piecewise linear decreasing processing times to minimize makespan. Information Processing Letters 102:41–47. https://doi.org/10.1016/j.ipl.2006.11.014

    MathSciNet  Article  MATH  Google Scholar 

  19. Ji M, Ge J, Chen K, Cheng TCE (2013) Single-machine due-window assignment and scheduling with resource allocation, aging effect, and a deteriorating rate-modifying activity. Comput Ind Eng 66:952–961. https://doi.org/10.1016/j.cie.2013.08.020

    Article  Google Scholar 

  20. Jin J, Ji P (2018) Scheduling jobs with resource-dependent ready times and processing times depending on their starting times and positions. Comput J 61:1323–1328. https://doi.org/10.1093/comjnl/bxx120

    MathSciNet  Article  Google Scholar 

  21. Kayvanfar V, Zandieh M, Teymourian E (2017) An intelligent water drop algorithm to identical parallel machine scheduling with controllable processing times: a just-in-time approach. Computational and Applied Mathematics 36:159–184. https://doi.org/10.1007/s40314-015-0218-3

    MathSciNet  Article  MATH  Google Scholar 

  22. Kim D-W, Kim K-H, Jang W, Chen FF (2002) Unrelated parallel machine scheduling with setup times using simulated annealing. Robot Comput Integr Manuf 223–231

  23. Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated annealing. Science 671–680

  24. Kong M, Liu X, Pei J, Pardalos PM, Mladenovic N (2018) Parallel-batching scheduling with nonlinear processing times on a single and unrelated parallel machines. J Global Optim. https://doi.org/10.1007/s10898-018-0705-3

    Article  Google Scholar 

  25. Li L, Wang J-J (2016) Scheduling jobs with deterioration effect and controllable processing time. Neural Comput Appl 29:1163–1170. https://doi.org/10.1007/s00521-016-2630-z

    Article  Google Scholar 

  26. Liaw C-F, Lin Y-K, Cheng C-Y, Chen M (2003) Scheduling unrelated parallel machines to minimize total weighted tardiness. Comput Oper Res 1777–1789

  27. Lin S-W, Ying K-C (2015) A multi-point simulated annealing heuristic for solving multiple objective unrelated parallel machine scheduling problems. Int J Prod Res 53:1065–1076. https://doi.org/10.1080/00207543.2014.942011

    Article  Google Scholar 

  28. Liu M, Zheng F, Wang S, Xu Y (2013) Approximation algorithms for parallel machine scheduling with linear deterioration. Theoret Comput Sci 497:108–111. https://doi.org/10.1016/j.tcs.2012.01.020

    MathSciNet  Article  MATH  Google Scholar 

  29. Liu Y, Dong H, Lohse N, Petrovic S, Gindy N (2014) An investigation into minimising total energy consumption and total weighted tardiness in job shops. J Clean Prod 65:87–96. https://doi.org/10.1016/j.jclepro.2013.07.060

    Article  Google Scholar 

  30. Low C, Wu G-H (2016) Unrelated parallel-machine scheduling with controllable processing times and eligibility constraints to minimize the makespan. J Ind Prod Eng 33:286–293. https://doi.org/10.1080/21681015.2016.1139005

    Article  Google Scholar 

  31. Lu Y-Y, Jin J, Ji P, Wang J-B (2016) Resource-dependent scheduling with deteriorating jobs and learning effects on unrelated parallel machine. Neural Comput Appl 27:1993–2000. https://doi.org/10.1007/s00521-015-1993-x

    Article  Google Scholar 

  32. Lu C, Gao L, Li X, Pan Q, Wang Q (2017) Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. J Clean Prod 144:228–238. https://doi.org/10.1016/j.jclepro.2017.01.011

    Article  Google Scholar 

  33. Mazdeh MM, Zaerpour F, Zareei A, Hajinezhad A (2010) Parallel machines scheduling to minimize job tardiness and machine deteriorating cost with deteriorating jobs. Appl Math Model 34:1498–1510. https://doi.org/10.1016/j.apm.2009.08.023

    MathSciNet  Article  MATH  Google Scholar 

  34. Mokhtari H, Abadi INK, Cheraghalikhani A (2011) A multi-objective flow shop scheduling with resource-dependent processing times: trade-off between makespan and cost of resources. Int J Prod Res 49:5851–5875. https://doi.org/10.1080/00207543.2010.523724

    Article  Google Scholar 

  35. Niu G, Sun S, Lafon P, Zhang Y, Wang J (2012) Two decompositions for the bicriteria job-shop scheduling problem with discretely controllable processing times. Int J Prod Res 50:7415–7427. https://doi.org/10.1080/00207543.2011.651169

    Article  Google Scholar 

  36. Ouazene Y, Yalaoui F (2017) Identical parallel machine scheduling with time-dependent processing times. Theoret Comput Sci. https://doi.org/10.1016/j.tcs.2017.12.001

    Article  MATH  Google Scholar 

  37. Pei J, Liu X, Liao B, Pardalos PM, Kong M (2018) Single-machine scheduling with learning effect and resource-dependent processing times in the serial-batching production. Appl Math Model 58:245–253. https://doi.org/10.1016/j.apm.2017.07.028

    MathSciNet  Article  MATH  Google Scholar 

  38. Pinedo ML (2016) Scheduling. Springer, Cham. https://doi.org/10.1007/978-3-319-26580-3

  39. Ruiz-Torres AJ, Paletta G, Pérez E (2013) Parallel machine scheduling to minimize the makespan with sequence dependent deteriorating effects. Comput Oper Res 40:2051–2061. https://doi.org/10.1016/j.cor.2013.02.018

    MathSciNet  Article  MATH  Google Scholar 

  40. Rustogi K, Strusevich VA (2012) Single machine scheduling with general positional deterioration and rate-modifying maintenance. Omega 40:791–804. https://doi.org/10.1016/j.omega.2011.12.007

    Article  Google Scholar 

  41. Rustogi K, Strusevich VA (2017) Single machine scheduling with a generalized job-dependent cumulative effect. J Sched 20:583–592. https://doi.org/10.1007/s10951-016-0497-6

    MathSciNet  Article  MATH  Google Scholar 

  42. Shabtay D, Steiner G (2007) Optimal due date assignment and resource allocation to minimize the weighted number of Tardy Jobs on a single machine. Manuf Serv Oper Manag 9:332–350. https://doi.org/10.1287/msom.1060.0139

    Article  Google Scholar 

  43. Shahvari O, Logendran R (2017) An Enhanced tabu search algorithm to minimize a bi-criteria objective in batching and scheduling problems on unrelated-parallel machines with desired lower bounds on batch sizes. Comput Oper Res 77:154–176. https://doi.org/10.1016/j.cor.2016.07.021

    MathSciNet  Article  MATH  Google Scholar 

  44. Su L-H, Lien C-Y (2009) Scheduling parallel machines with resource-dependent processing times. Int J Prod Econ 117:256–266

    Article  Google Scholar 

  45. Sule DR, Sule DR (2008) Production planning and industrial scheduling: examples, case studies, and applications, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  46. Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley, Hoboken, N.J.

    Google Scholar 

  47. Tigane M, Dahane M, Boudhar M (2018) Multiobjective approach for deteriorating jobs scheduling for a sustainable manufacturing system. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-3043-1

    Article  Google Scholar 

  48. Ulungu EL, Teghem J, Fortemps PH, Tuyttens D (1999) MOSA method: a tool for solving multiobjective combinatorial optimization problems. J Multi Crit Decis Anal 8:221–236. https://doi.org/10.1002/(SICI)1099-1360(199907)8:4%3c221:AID-MCDA247%3e3.0.CO;2-O

    Article  MATH  Google Scholar 

  49. Wang S, Liu M (2015) Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive maintenance planning. J Manufact Syst 37:182–192. https://doi.org/10.1016/j.jmsy.2015.07.002

    Article  Google Scholar 

  50. Wang X-R, Wang J-J (2013a) Single-machine scheduling with convex resource dependent processing times and deteriorating jobs. Appl Math Model 37:2388–2393. https://doi.org/10.1016/j.apm.2012.05.025

    MathSciNet  Article  MATH  Google Scholar 

  51. Wang X-Y, Wang J-J (2013b) Single-machine due date assignment problem with deteriorating jobs and resource-dependent processing times. Int J Adv Manufact Technol 67:255–260. https://doi.org/10.1007/s00170-013-4771-x

    Article  Google Scholar 

  52. Wang J-B, Wang J-J (2015) Research on scheduling with job-dependent learning effect and convex resource-dependent processing times. Int J Prod Res 53:5826–5836. https://doi.org/10.1080/00207543.2015.1010746

    Article  Google Scholar 

  53. Wei C-M, Wang J-B, Ji P (2012) Single-machine scheduling with time-and-resource-dependent processing times. Appl Math Model 36:792–798. https://doi.org/10.1016/j.apm.2011.07.005

    MathSciNet  Article  MATH  Google Scholar 

  54. Yang S-J, Yang D-L (2010) Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities. Omega 38:528–533. https://doi.org/10.1016/j.omega.2010.01.003

    Article  Google Scholar 

  55. Yang D-L, Cheng TCE, Yang S-J (2014) Parallel-machine scheduling with controllable processing times and rate-modifying activities to minimise total cost involving total completion time and job compressions. Int J Prod Res 52:1133–1141. https://doi.org/10.1080/00207543.2013.841330

    Article  Google Scholar 

  56. Zeng Y, Che A, Wu X (2018) Bi-objective scheduling on uniform parallel machines considering electricity cost. Eng Optim 50:19–36. https://doi.org/10.1080/0305215X.2017.1296437

    MathSciNet  Article  Google Scholar 

  57. Zhao C, Tang H (2010) Single machine scheduling with general job-dependent aging effect and maintenance activities to minimize makespan. Appl Math Model 34:837–841. https://doi.org/10.1016/j.apm.2009.07.002

    MathSciNet  Article  MATH  Google Scholar 

  58. Zhao C, Hsu C-J, Cheng S-R, Yin Y, Wu C-C (2014) Due date assignment and single machine scheduling with deteriorating jobs to minimize the weighted number of tardy jobs. Appl Math Comput 248:503–510. https://doi.org/10.1016/j.amc.2014.09.095

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fayçal Belkaid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sekkal, N., Belkaid, F. A multi-objective simulated annealing to solve an identical parallel machine scheduling problem with deterioration effect and resources consumption constraints. J Comb Optim (2020). https://doi.org/10.1007/s10878-020-00607-y

Download citation

Keywords

  • Parallel machine
  • Deterioration
  • Resources cost
  • Makespan
  • MOSA
  • 2-Steps algorithm