Advertisement

Journal of Combinatorial Optimization

, Volume 35, Issue 2, pp 454–462 | Cite as

Upper bounds for adjacent vertex-distinguishing edge coloring

Article
  • 149 Downloads

Abstract

An adjacent vertex-distinguishing edge coloring of a graph is a proper edge coloring such that no pair of adjacent vertices meets the same set of colors. The adjacent vertex-distinguishing edge chromatic number is the minimum number of colors required for an adjacent vertex-distinguishing edge coloring, denoted as \(\chi '_{as}(G)\). In this paper, we prove that for a connected graph G with maximum degree \(\Delta \ge 3\), \(\chi '_{as}(G)\le 3\Delta -1\), which proves the previous upper bound. We also prove that for a graph G with maximum degree \(\Delta \ge 458\) and minimum degree \(\delta \ge 8\sqrt{\Delta ln \Delta }\), \(\chi '_{as}(G)\le \Delta +1+5\sqrt{\Delta ln \Delta }\).

Keywords

Proper edge coloring Adjacent vertex-distinguishing edge coloring Lov\(\acute{a}\)sz local lemma 

Notes

Acknowledgements

The authors are grateful to reviewers for useful remarks, and convey individual thanks to the referee for the thorough inspection of the proof. This work was supported by NSFC (Grant No.11771403).

References

  1. Akbari S, Bidkhori H, Nosrati N (2006) \(r\)-strong edge colorings of graphs. Discrete Math 306:3005–3010MathSciNetCrossRefMATHGoogle Scholar
  2. Bonamy M, Przybyło J (2017) On the neighbor sum distinguishing index of planar graphs. J Graph Theroy 85:669–690MathSciNetCrossRefMATHGoogle Scholar
  3. Burris AC (1993) Vertex-distinguishing edge-colorings. Ph.D. thesis: Memphis State UniversityGoogle Scholar
  4. Burris AC, Schelp RH (1997) Vertex-distinguishing proper edge-coloring. J Graph Theroy 26:73–82MathSciNetCrossRefMATHGoogle Scholar
  5. Balister PN, Győri E, Lehel J, Schelp RH (2007) Adjacent vertex distinguishing edge-colorings of graphs. SIMA J Discrete Math 21:237–250CrossRefMATHGoogle Scholar
  6. Chen X, Li Z (2015) Adjacent-vertex-distinguishing proper edge colorings of planar bipartite graphs with \(\Delta =9,10,11\). Inf Process Lett 115:263–268MathSciNetCrossRefMATHGoogle Scholar
  7. Černỳ J, Horn̆ák M, Soták R (1996) Observability of a graph. Math Slovaca 46:21–31MathSciNetMATHGoogle Scholar
  8. Edwards K, Horn̆ák M, Woźniak M (2006) On the neighbour distinguishing index of a graph. Graphs Combin 22:341–350MathSciNetCrossRefMATHGoogle Scholar
  9. Favaron O, Li H, Schelp RH (1996) Strong edge coloring of graphs. Discrete Math 159:103–109MathSciNetCrossRefMATHGoogle Scholar
  10. Ghandehari M, Hatami H (2004) Two upper bounds for the strong edge chromatic number. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8996
  11. Hatami H (2005) \(\Delta +300\) is a bound on the adjacent vertex distinguishing edge chromatic number. J Combin Theory Ser B 95:246–256MathSciNetCrossRefMATHGoogle Scholar
  12. Hocquard H, Montassier M (2011) Adjacent vertex-distinguishing edge coloring of graphs with maximum degree at least five. Electron Notes Discrete Math 38:457–462CrossRefMATHGoogle Scholar
  13. Hocquard H, Montassier M (2013) Adjacent vertex-distinguishing edge coloring of graphs with maximum degree \(\Delta \). J Comb Optim 26:152–160MathSciNetCrossRefMATHGoogle Scholar
  14. Horn̆ák M, Soták R (1995) Observalility of complete multipartite graphs with equipment parts. Ars Combin 41:289–301MathSciNetGoogle Scholar
  15. Liu L, Zhang Z, Wang J (2005) On the adjacent strong edge coloring of outerplane graphs. J Math Res Expos 25:255–266MATHGoogle Scholar
  16. Vučković B (2017) Edge-partitions of graphs and their neighbor-distinguishing index. Discrete Math. doi: 10.1016/j.disc.2017.07.005 MathSciNetMATHGoogle Scholar
  17. Wang W, Wang Y (2010) Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree. J Comb Optim 19:471–485MathSciNetCrossRefMATHGoogle Scholar
  18. Wang W, Wang Y (2011) Adjacent vertex-distinguishing edge colorings of \(K_{4}\)-minor graphs. Appl Math Lett 24:2034–2037MathSciNetCrossRefMATHGoogle Scholar
  19. Wang Y, Cheng J, Luo R, Mulley G (2016) Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs. J Comb Optim 31:874C880MathSciNetMATHGoogle Scholar
  20. Wang Y, Wang W, Huo J (2015) Some bounds on the neighbor-distinguishing index of graphs. Discrete Math 338:2006–2013MathSciNetCrossRefMATHGoogle Scholar
  21. Yan C, Huang D, Chen D, Wang W (2014) Adjacent vertex distinguishing edge colorings of planar graphs with girth at least five. J Comb Optim 28:893–909MathSciNetCrossRefMATHGoogle Scholar
  22. Yu X, Qu C, Wang G, Wang Y (2016) Adjacent vertex distinguishing colorings by sum of sparse graphs. Discrete Math 339:62–71MathSciNetCrossRefMATHGoogle Scholar
  23. Zhang Z, Liu L, Wang J (2002) Adjacent strong edge coloring of graph. Appl Math Lett 15:623–626MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of Mathematics, Physics and Information EngineeringZhejiang Normal UniversityJinhuaChina
  2. 2.College of Mathematics, Physics and Information EngineeringJiaxing UniversityJiaxingChina
  3. 3.Zhejiang Normal University Xingzhi CollegeJinhuaChina

Personalised recommendations