Journal of Combinatorial Optimization

, Volume 32, Issue 4, pp 1052–1067 | Cite as

An improved approximation algorithm for the shortest link scheduling in wireless networks under SINR and hypergraph models

  • Cui Wang
  • Jiguo Yu
  • Dongxiao Yu
  • Baogui Huang
  • Shanshan Yu


Link scheduling is a fundamental problem in wireless ad hoc and sensor networks. In this paper, we focus on the shortest link scheduling (SLS) under Signal-to-Interference-plus-Noise-Ratio and hypergraph models, and propose an approximation algorithm \(SLS_{pc}\) (A link scheduling algorithm with oblivious power assignment for the shortest link scheduling) with oblivious power assignment for better performance than GOW* proposed by Blough et al. [IEEE/ACM Trans Netw 18(6):1701–1712, 2010]. For the average scheduling length of \(SLS_{pc}\) is 1 / m of GOW*, where \(m=\lfloor \varDelta _{max}\cdot p \rfloor \) is the expected number of the links in the set V returned by the algorithm HyperMaxLS (Maximal links schedule under hypergraph model) and \(0<p<1\) is the constant. In the worst, ideal and average cases, the ratios of time complexity of our algorithm \(SLS_{pc}\) to that of GOW* are \(O(\varDelta _{max}/\overline{k})\), \(O(1/(\overline{k}\cdot \varDelta _{max}))\) and \(O(\varDelta _{max}/(\overline{k}\cdot m))\), respectively. Where \(\overline{k}\) (\(1<\overline{k}<\varDelta _{max}\)) is a constant called the SNR diversity of an instance G.


Wireless network Shortest link scheduling Approximation algorithm Hypergraph model SINR 



The work was partially supported by National Natural Science Foundation of China for contract 61373027, Natural Science Foundation of Shandong Province for contract ZR2012FM023.


  1. Afek Y, Alon N, Barad O, Hornstein E, Barkai N, Bar-Joseph Z (2011) A biological solution to a fundamental distributed computing problem. Science 331(6014):183–185MathSciNetCrossRefMATHGoogle Scholar
  2. Blough DM, Resta G, Santi P (2010) Approximation algorithms for wireless link scheduling with SINR-based interference. IEEE/ACM Trans Netw 18(6):1701–1712CrossRefGoogle Scholar
  3. Cai Z, Duan Y, Bourgeios A (2015) Delay efficient opportunistic routing in asynchronous multi-channel cognitive radio networks. J Comb Optim 29(4):815–835MathSciNetCrossRefMATHGoogle Scholar
  4. Chaporkar P, Kar K, Luo X, Sarkar S (2008) Throughput and fairness guarantees through maximal scheduling in wireless networks. IEEE Trans Inf Theory 54(2):572–594MathSciNetCrossRefMATHGoogle Scholar
  5. Chaorkar A, Proutiere P (2013) Optimal distributed scheduling in wireless networks under SINR interference model. arXiv:1305.038 [cs.IT]
  6. Cheng S, Cai Z, Li J, et al. (2015) Drawing dominant dataset from big sensory data in wireless sensor networks. In: Proceedings of the IEEE INFOCOM 2015Google Scholar
  7. Dimakis A, Walrand J (2006) Sufficient conditions for stability of longest queue first scheduling: second order properties using fluid limits. Adv Appl Probab 38(2):505–521MathSciNetCrossRefMATHGoogle Scholar
  8. ElBatt T, Ephremides A (2004) Joint scheduling and power control for wireless ad hoc networks. IEEE Trans Wireless Commun 3(1):74–85CrossRefGoogle Scholar
  9. Gao J, Li J, Cai Z, Gao H (2015) Composite event coverage in wireless sensor networks with heterogeneous sensors. In: Proceedings of the IEEE INFOCOM 2015Google Scholar
  10. Goussevskaia O, Oswald YV, Wattenhofer R (2007) Complexity in geometric SINR. Proc. ACM MobiHoc 2007:100–109Google Scholar
  11. Goussevskaia O, Wattenhofer R, Hallorsson MM, Welzl E (2009) Capacity of arbitrary wireless networks. Proc. IEEE INFOCOM 2009:1872–1880Google Scholar
  12. Guo L, Li Y, Cai Z (2014) Minimum-latency aggregation scheduing in wireless sensor network. J Comb Optim. doi: 10.1007/s10878-014-9748-7
  13. Gupta P, Kumar PR (2000) The capacity of wireless networks. IEEE Trans Inf Theory 46(2):388–404MathSciNetCrossRefMATHGoogle Scholar
  14. Halldórsson MM, Mitra P (2011) Nearly optimal bounds for distributed wireless scheduleing in the SINR model. Proc. ICALP 2011:625–636MATHGoogle Scholar
  15. Hajek B, Sasaki G (1988) Link scheduling in ploynomial time. IEEE Trans Inf Theory 34(5):910–917MathSciNetCrossRefMATHGoogle Scholar
  16. He Z, Cai Z, Cheng S, Wang X (2014) Approximate aggregation for tracking quantiles in wireless sensor networks. In: Proceedings of the COCOA 2014. LNCS 8881, pp 161–172Google Scholar
  17. Ji S, Uluagac A, Beyah R, Cai Z (2013) Practical unicast and convergecast scheduling schemes for cognitive radio networks. J Comb Optim 26(1):161–177MathSciNetCrossRefMATHGoogle Scholar
  18. Kesselheim T (2011) A constant-factor approximation for wireless capacity maximization with power control in the SINR model. Proc. SODA 2011:1549–1559MathSciNetGoogle Scholar
  19. Kozat UC, Koutsopoulos I (2006) Cross-layer desgin for power efficiency and Qos provisioning in multi-hop wireless networks. IEEE Trans Wireless Commun 5(11):3306–3315CrossRefGoogle Scholar
  20. Kompella S, Wieselthier JE, Ephremides A, Sherali HD (2010) On optimal SINR-based scheduling in multihop wireless networks. IEEE/ACM Trans Netw 18(6):1713–1724CrossRefGoogle Scholar
  21. Li D, Zhu Q, Du H, Li J (2014) An improved distributed data aggregation scheduling in wireless sensor networks. J Comb Optim 27(2):221–240MathSciNetCrossRefMATHGoogle Scholar
  22. Li Q, Kim G, Negi R (2008) Maximal scheduling in a hypergraph model for wireless networks. Proc IEEE ICC 2008:3853–3857Google Scholar
  23. Li Q, Negi R (2012) Maximal scheduling in wireless ad hoc networks with hypergraph interference models. IEEE Trans Veh Technol 61(1):297–310CrossRefGoogle Scholar
  24. Nelson R, Kleinrock L (1985) Spatial-TDMA: a collison-free multihop channel access protocol. IEEE Trans Commun 33(9):934–944MathSciNetCrossRefGoogle Scholar
  25. Pei G, Kumar A, Vullikanti S (2012) Distributed algorithms for maximum link scheduling under the physical interference model. Proc DISC 2012:407–408MathSciNetMATHGoogle Scholar
  26. Pei G, Anil Kumar VS (2012) Efficient algorithms for maximum link scheduling in distributed computing models with SINR contraints. arXiv:1208.0811v2[cs.DC]16, Nov (2012)
  27. Sarkar S, Sivarajan KN (1998) Hypergraph models for cellular mobile communication systems. IEEE Trans Veh Technol 47(2):460–471CrossRefGoogle Scholar
  28. Schmidt S, Wattenhofer R (2006) Algorithmic models for sensor networks. In: Proceedings of the IEEE IPDPS 2006Google Scholar
  29. Sharma G, Mazumdar R, Shroff N (2006) On the complexity of scheduling in wireless networks. Proc ACM MobiCom 2006:227–238Google Scholar
  30. Wan P, Xu X, Frieder O (2010) Shortest link scheduling with power control under physical interference model. Proc IEEE MSN 2010:74–78Google Scholar
  31. Wan, P, Wang, L, Ma, C, Wang, Z, Xu, B, L, M (2013) Maximizing wireless network capacity with linear power: breaking the logarithmic barrier. In: Proceedings of the IEEE INFoCOM 2013, pp 135–139Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Cui Wang
    • 1
  • Jiguo Yu
    • 1
  • Dongxiao Yu
    • 2
  • Baogui Huang
    • 1
  • Shanshan Yu
    • 3
  1. 1.School of Information Science and EngineeringQufu Normal UniversityRizhaoChina
  2. 2.Department of Computer ScienceThe University of Hong KongPokfulamChina
  3. 3.School of Information Science and EngineeringShandong UniversityJinanChina

Personalised recommendations