Journal of Combinatorial Optimization

, Volume 26, Issue 1, pp 152–160 | Cite as

Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ

  • Hervé Hocquard
  • Mickaël Montassier


An adjacent vertex-distinguishing edge coloring, or avd-coloring, of a graph G is a proper edge coloring of G such that no pair of adjacent vertices meets the same set of colors. Let \(\operatorname {mad}(G)\) and Δ(G) denote the maximum average degree and the maximum degree of a graph G, respectively. In this paper, we prove that every graph G with Δ(G)≥5 and \(\operatorname{mad}(G) < 3-\frac {2}{\Delta}\) can be avd-colored with Δ(G)+1 colors. This completes a result of Wang and Wang (J. Comb. Optim. 19:471–485, 2010).


Adjacent vertex-distinguishing edge coloring Maximum average degree 


  1. Akbari S, Bidkhori H, Nosrati N (2006) r-Strong edge colorings of graphs. Discrete Math 306:3005–3010 MathSciNetMATHCrossRefGoogle Scholar
  2. Balister PN, Riordan OM, Schelp RH (2003) Vertex-distinguishing edge-colorings of graphs. J Graph Theory 42:95–109 MathSciNetMATHCrossRefGoogle Scholar
  3. Balister PN, Győri E, Lehel J, Schelp RH (2007) Adjacent vertex distinguishing edge-colorings. SIAM J Discrete Math 21:237–250 MathSciNetMATHCrossRefGoogle Scholar
  4. Burris AC, Schelp RH (1997) Vertex-distinguishing proper edge-colorings. J Graph Theory 26:73–83 MathSciNetMATHCrossRefGoogle Scholar
  5. Cerný J, Horn̆ák M, Soták R (1996) Observability of a graph. Math Slovaca 46(1):21–31 MathSciNetMATHGoogle Scholar
  6. Dedó E, Torri D, Zagaglia Salvi N (2002) The observability of the Fibonacci and the Lucas cubes. Discrete Math 255:55–63 MathSciNetMATHCrossRefGoogle Scholar
  7. Favaron O, Li H, Schelp RH (1996) Strong edge coloring of graphs. Discrete Math 159:103–109 MathSciNetMATHCrossRefGoogle Scholar
  8. Horn̆ák M (1997) Asymptotic behaviour of the observability of Q n. Discrete Math 176:139–148 MathSciNetCrossRefGoogle Scholar
  9. Horn̆ák M, Soták R (1995) Observability of complete multipartite graphs with equipotent parts. Ars Comb 41:289–301 Google Scholar
  10. Wang W, Wang Y (2010) Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree. J Comb Optim 19:471–485 MathSciNetMATHCrossRefGoogle Scholar
  11. Zhang Z, Liu L, Wang J (2002) Adjacent strong edge coloring of graphs. Appl Math Lett 15:623–626 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.LaBRIUniversité Bordeaux ITalence CedexFrance

Personalised recommendations