Skip to main content
Log in

Constructions of given-depth and optimal multirate rearrangeably nonblocking distributors

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Rearrangeable multirate multicast switching networks are customarily called rearrangeable multirate distributors. It has been known for a long time that rearrangeable multirate distributors with cross-point complexity O(nlog 2 n) can be constructed, where n is the number of inputs (and outputs) of the switching network. The problem of constructing optimal distributors remains open thus far.

This paper gives a general construction of rearrangeable multirate distributors with given depths. One byproduct is a rearrangeable multirate distributor with crosspoint complexity O(nlog n). We also show that this cross-point complexity is optimal, settling the aforementioned open problem.

One of the key ingredients of our new construction is the notion of multirate concentrators. The second ingredient is a multirate version of the Pippenger network. We show how to construct given-depth multirate concentrators and given-depth multirate Pippenger networks with small sizes. When the depth is chosen to optimize the size, we obtain the optimal O(nlog n) cross-point complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alon N, Pudlák P (1994) Superconcentrators of depths 2 and 3; odd levels help (rarely). J Comput Syst Sci 48(1):194–202

    Article  MATH  Google Scholar 

  • Arora S, Leighton FT, Maggs BM (1996) On-line algorithms for path selection in a nonblocking network. SIAM J Comput 25(3):600–625

    Article  MathSciNet  MATH  Google Scholar 

  • Chung SP, Ross KW (1991) On nonblocking multirate interconnection networks. SIAM J Comput 20(4):726–736

    Article  MathSciNet  MATH  Google Scholar 

  • Clos C (1953) A study of non-blocking switching networks. Bell Syst Tech J 32:406–424

    Google Scholar 

  • Coppo P, D’Ambrosio M, Melen R (1993) Optimal cost/performance design of ATM switches. IEEE/ACM Trans Netw 1(5):566–575

    Article  Google Scholar 

  • Correa JR, Goemans MX (2004) An approximate König’s theorem for edge-coloring weighted bipartite graphs. In: Proceedings of the 36th annual ACM symposium on theory of computing. ACM, New York, pp 398–406 (electronic)

    Google Scholar 

  • Dolev D, Dwork C, Pippenger N, Wigderson A (1983) Superconcentrators, generalizers and generalized connectors with limited depth (preliminary version). In: Proceedings of the fifteenth annual ACM symposium on theory of computing, Boston, Massachusetts, pp 42–51

    Chapter  Google Scholar 

  • Du DZ, Gao B, Hwang FK, Kim JH (1999) On multirate rearrangeable Clos networks. SIAM J Comput 28(2):464–471 (electronic)

    MathSciNet  Google Scholar 

  • Fingerhut JA, Suri S, Turner JS (1997) Designing least-cost nonblocking broadband networks. J Algorithms 24(2):287–309

    Article  MathSciNet  MATH  Google Scholar 

  • Hoory S, Linial N, Wigderson A (2006) Expander graphs and their applications. Bull New Ser Am Math Soc 43(4):439–561 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Hu XD, Jia XH, Du DZ, Hwang FK (2001) Monotone routing in multirate rearrangeable Clos networks. J Parallel Distrib Comput 61(9):1382–1388

    Article  MATH  Google Scholar 

  • Hui JH (1990) Switching and traffic theory for integrated broadband networks. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  • Hwang FK (1998) The mathematical theory of nonblocking switching networks. World Scientific, River Edge

    MATH  Google Scholar 

  • Karp RM (1992) Three-stage generalized connectors. SIAM J Discrete Math 5(2):259–272

    Article  MathSciNet  MATH  Google Scholar 

  • Kim DS, Du DZ (2001) Multirate multicast switching networks. Theor Comput Sci 261(2):241–251. Computing and combinatorics (Taipei, 1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Liew SC, Ng MH, Chan CW (1998) Blocking and nonblocking multirate Clos switching networks. IEEE/ACM Trans Netw 6(3):307–318

    Article  Google Scholar 

  • Lin GH, Du DZ, Hu XD, Xue G (1999) On rearrangeability of multirate Clos networks. SIAM J Comput 28(4):1225–1231 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Melen R, Turner JS (1989) Nonblocking multirate networks. SIAM J Comput 18(2):301–313

    Article  MathSciNet  MATH  Google Scholar 

  • Melen R, Turner JS (1990) Nonblocking multirate distribution networks. In: INFOCOM, pp 1234–1241

    Google Scholar 

  • Melen R, Turner JS (1993) Nonblocking multirate distribution networks. IEEE Trans Commun 41(2):362–369

    Article  MATH  Google Scholar 

  • Ngo HQ (2003) A new routing algorithm for multirate rearrangeable Clos networks. Theor Comput Sci 290(3):2157–2167

    Article  MathSciNet  MATH  Google Scholar 

  • Ngo HQ (2004) Multiwavelength distribution networks. In: Proceedings of the workshop on high performance switching and routing (HPSR). IEEE, Phoenix, pp 186–190

    Chapter  Google Scholar 

  • Ngo HQ, Du DZ (2001) Notes on the complexity of switching networks. In: Du, DZ, Ngo, HQ (eds) Advances in switching networks. Network theory and applications, vol 5. Kluwer Academic, Dordrecht, pp 307–367

    Chapter  Google Scholar 

  • Ngo HQ, Vu VH (2003) Multirate rearrangeable Clos networks and a generalized bipartite graph edge coloring problem. SIAM J Comput 32(4):1040–1049

    Article  MathSciNet  MATH  Google Scholar 

  • Ngo HQ, Wang Y, Pan D (2009) Rearrangeable and nonblocking [w,f]-distributors. IEEE/ACM Trans Netw 17:990–1001. doi:10.1109/TNET.2008.2001728

    Article  Google Scholar 

  • Niestegge G (1987) Nonblocking multirate switching networks. In: Proceedings of the 5th ITC seminar on traffic engineering for ISDN design and planning, pp 449–458

    Google Scholar 

  • Ofman JP (1965) A universal automaton. Tr Mosk Mat Obŝ 14:186–199

    MathSciNet  MATH  Google Scholar 

  • Pippenger N (1973) The complexity of switching networks. PhD thesis, Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

  • Pippenger N (1978) Generalized connectors. SIAM J Comput 7(4):510–514

    Article  MathSciNet  MATH  Google Scholar 

  • Pudlák P (1994) Communication in bounded depth circuits. Combinatorica 14(2):203–216

    Article  MathSciNet  MATH  Google Scholar 

  • Radhakrishnan J, Ta-Shma A (2000) Bounds for dispersers, extractors, and depth-two superconcentrators. SIAM J Discrete Math 13(1):2–24 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Turner JS, Melen R (2003) Multirate Clos networks. IEEE Commun Mag 41(10):38–44

    Article  Google Scholar 

  • Turner JS, Yamanaka N (1998) Architectural choices in large scale ATM switches. IEICE Trans Commun E81-B(2):120–137

    Google Scholar 

  • Valiant LG (1975) On non-linear lower bounds in computational complexity. In: Seventh annual ACM symposium on theory of computing, Albuquerque, NM, 1975. Assoc Comput Mach, New York, pp 45–53

    Chapter  Google Scholar 

  • Valiant LG (1976) Graph-theoretic properties in computational complexity. J Comput Syst Sci 13(3):278–285. Working papers presented at the ACM-SIGACT symposium on the theory of computing (Albuquerque, NM, 1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Ngo HQ, Nguyen TN (2007) Constructions of given-depth and optimal multirate rearrangeably nonblocking distributors. In: Proceedings of the workshop on high performance switching and routing (HPSR). IEEE Press, New York

    Google Scholar 

  • West DB (1996) Introduction to graph theory. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Yang Y (1994) An analysis model on nonblocking multirate broadcast networks. In: International conference on supercomputing, pp 256–263

    Google Scholar 

  • Yavuz Oruc A, Huang H (1996) Crosspoint complexity of sparse crossbar concentrators. IEEE Trans Inf Theory 42(5):1466–1471

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Q. Ngo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Ngo, H.Q. & Nguyen, TN. Constructions of given-depth and optimal multirate rearrangeably nonblocking distributors. J Comb Optim 24, 468–484 (2012). https://doi.org/10.1007/s10878-011-9402-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-011-9402-6

Keywords

Navigation