Advertisement

Journal of Combinatorial Optimization

, Volume 23, Issue 4, pp 483–492 | Cite as

An FPTAS for uniform machine scheduling to minimize makespan with linear deterioration

  • Ming Liu
  • Feifeng Zheng
  • Chengbin Chu
  • Jiantong Zhang
Article

Abstract

This paper consider m uniform (parallel) machine scheduling with linear deterioration to minimize the makespan. In an uniform machine environment, all machines have different processing speeds. Linear deterioration means that job’s actual processing time is a linear increasing function on its execution starting time. We propose a fully polynomial-time approximation scheme (FPTAS) to show the problem is NP-hard in the ordinary sense.

Keywords

Scheduling Uniform machine Linear deterioration Makespan FPTAS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alidaee B, Womer N (1999) Scheduling with time dependent processing times: review and extentions. J Oper Res Soc 50:711–720 MATHGoogle Scholar
  2. Browne S, Yechiali U (1990) Scheduling deteriorating jobs on a single processor. Oper Res 38:495–498 MATHCrossRefGoogle Scholar
  3. Chen ZL (1996) Parallel machine scheduling with time dependent processing times. Discrete Appl Math 70:81–93 MathSciNetMATHCrossRefGoogle Scholar
  4. Chen ZL (1997) Erratum to “Parallel machine scheduling with time dependent processing times” [Discrete Applied Mathematics 70 (1996) 81–93]. Discrete Appl Math 75:103 MathSciNetCrossRefGoogle Scholar
  5. Cheng T, Ding Q (2001) Single machine scheduling with step-deteriorating processing times. Eur J Oper Res 134:623–630 MathSciNetMATHCrossRefGoogle Scholar
  6. Cheng Y, Sun S (2009) Scheduling linear deterorating jobs with rejection on a single machine. Eur J Oper Res 194:18–27 MathSciNetMATHCrossRefGoogle Scholar
  7. Cheng T, Ding Q, Lin B (2004) A concise survey of scheduling with time-dependent processing times. Eur J Oper Res 152:1–13 MathSciNetMATHCrossRefGoogle Scholar
  8. Cheng T, Kang L, Ng C (2004) Due-date assignment and single machine scheduling with deteriorating jobs. J Oper Res Soc 55:198–203 MATHCrossRefGoogle Scholar
  9. Gupta J, Gupta S (1988) Single facility scheduling with nonlinear processing times. Comput Ind Eng 14:387–393 CrossRefGoogle Scholar
  10. Ji M, Cheng TCE (2008) Parallel-machine scheduling with simple linear deterioration to minimize total completion time. Eur J Oper Res 188:342–347 MathSciNetMATHCrossRefGoogle Scholar
  11. Kang L, Ng CT (2007) A note on a fully polynomial-time approximation scheme for parallel-machine scheduling with deteriorating jobs. Int J Prod Econ 109:180–184 CrossRefGoogle Scholar
  12. Kovalyov MY, Kubiak W (1998) A fully polynomial approximation scheme for minimizing makespan of deteriorating jobs. J Heuristics 3:287–297 MATHCrossRefGoogle Scholar
  13. Kovalyov MY, Kubiak W (1999) A fully polynomial approximation scheme for the weighted earliness-tardiness problem. Oper Res 47:757–761 MathSciNetMATHCrossRefGoogle Scholar
  14. Lodree E, Gerger C (2010) A note on the optimal sequence position for a rate-modifying activity under simple linear deterioration. Eur J Oper Res 201:644–648 MATHCrossRefGoogle Scholar
  15. Mosheiov G (1991) V-shaped policies for scheduling deteriorating jobs. Oper Res 39:979–991 MathSciNetMATHCrossRefGoogle Scholar
  16. Mosheiov G (1994) Scheduling jobs under simple linear deterioration. Comput Oper Res 21:653–659 MATHCrossRefGoogle Scholar
  17. Mosheiov G (1998) Multi-machine scheduling with linear deterioration. INFOR 36(4):205–214 Google Scholar
  18. Pinedo M (2000) Scheduling: theory, algorithms, and systems, 2nd edn. Prentice Hall, Englewood Cliffs Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ming Liu
    • 1
  • Feifeng Zheng
    • 2
  • Chengbin Chu
    • 3
  • Jiantong Zhang
    • 1
  1. 1.School of Economics & ManagementTongji UniversityShanghaiP.R. China
  2. 2.School of ManagementXi’an Jiaotong UniversityXi’an, ShaanxiP.R. China
  3. 3.Laboratoire Génie IndustrielEcole Centrale ParisChâtenay-Malabry CedexFrance

Personalised recommendations