Advertisement

Journal of Combinatorial Optimization

, Volume 17, Issue 1, pp 74–97 | Cite as

Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques

  • Shivkumar Sabesan
  • Niranjan Chakravarthy
  • Kostas Tsakalis
  • Panos Pardalos
  • Leon Iasemidis
Article

Abstract

Epileptic seizures are manifestations of intermittent spatiotemporal transitions of the human brain from chaos to order. Measures of chaos, namely maximum Lyapunov exponents (STL max ), from dynamical analysis of the electroencephalograms (EEGs) at critical sites of the epileptic brain, progressively converge (diverge) before (after) epileptic seizures, a phenomenon that has been called dynamical synchronization (desynchronization). This dynamical synchronization/desynchronization has already constituted the basis for the design and development of systems for long-term (tens of minutes), on-line, prospective prediction of epileptic seizures. Also, the criterion for the changes in the time constants of the observed synchronization/desynchronization at seizure points has been used to show resetting of the epileptic brain in patients with temporal lobe epilepsy (TLE), a phenomenon that implicates a possible homeostatic role for the seizures themselves to restore normal brain activity. In this paper, we introduce a new criterion to measure this resetting that utilizes changes in the level of observed synchronization/desynchronization. We compare this criterion’s sensitivity of resetting with the old one based on the time constants of the observed synchronization/desynchronization. Next, we test the robustness of the resetting phenomena in terms of the utilized measures of EEG dynamics by a comparative study involving STL max , a measure of phase (φ max ) and a measure of energy (E) using both criteria (i.e. the level and time constants of the observed synchronization/desynchronization). The measures are estimated from intracranial electroencephalographic (iEEG) recordings with subdural and depth electrodes from two patients with focal temporal lobe epilepsy and a total of 43 seizures. Techniques from optimization theory, in particular quadratic bivalent programming, are applied to optimize the performance of the three measures in detecting preictal entrainment. It is shown that using either of the two resetting criteria, and for all three dynamical measures, dynamical resetting at seizures occurs with a significantly higher probability (α=0.05) than resetting at randomly selected non-seizure points in days of EEG recordings per patient. It is also shown that dynamical resetting at seizures using time constants of STL max synchronization/desynchronization occurs with a higher probability than using the other synchronization measures, whereas dynamical resetting at seizures using the level of synchronization/desynchronization criterion is detected with similar probability using any of the three measures of synchronization. These findings show the robustness of seizure resetting with respect to measures of EEG dynamics and criteria of resetting utilized, and the critical role it might play in further elucidation of ictogenesis, as well as in the development of novel treatments for epilepsy.

Keywords

Quadratic binary programming Dynamical Synchronization Spatiotemporal transitions Epileptic seizure dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel H (1996) Analysis of observed chaotic data. Springer, Berlin MATHGoogle Scholar
  2. Chakravarthy N, Sabesan S, Iasemidis LD, Tsakalis K (2007) Controlling synchronization in a neuron-level population model. Int J Neural Syst 17(2):123–138 CrossRefGoogle Scholar
  3. Chawla D, Lumer ED, Friston KJ (1999) The relationship between synchronization among neuronal populations and their mean activity level. Neural Comput. 11(6):1389–1411 CrossRefGoogle Scholar
  4. Domb C, Green M (1974) Phase transitions and critical phenomena. Academic Press, New York Google Scholar
  5. Esteller R, Echauz J, D’Alessandro M, Worrell G, Cranstoun S, Vachtsevanos G, Litt B (2005) Continuous energy variation during the seizure cycle: towards an on-line accumulated energy. Clin Neurophysiol 116(3):517–526 CrossRefGoogle Scholar
  6. Fink M (2000) Electroshock revisited. Am Sci 88:162–167 Google Scholar
  7. Good L (2007) Automated seizure prediction and control in a rat model of chronic epilepsy. PhD thesis, Arizona State University Google Scholar
  8. Good L, Sabesan S, Iasemidis L, Tsakalis K, Treiman D (2004) Brain dynamical disentrainment by a nti-epileptic drugs in rat and human status epilepticus. In: 26th annual international conference of the engineering in medicine and biology society, vol 1, pp 1–4 Google Scholar
  9. Grassberger P, Procaccia I (1983a) Characterization of strange attractors. Phys Rev Lett 50(5):346–349 CrossRefMathSciNetGoogle Scholar
  10. Grassberger P, Procaccia I (1983b) Measuring the strangeness of strange attractors. Phys D: Nonlinear Phenom 9(1–2):189–208 MATHCrossRefMathSciNetGoogle Scholar
  11. Gwinn R, Kondratyev A, Gale K (2002) Time-dependent increase in basic fibroblast growth factor protein in limbic regions following electroshock seizures. Neuroscience 114(2):403–409 CrossRefGoogle Scholar
  12. Haken H (1996) Principles of brain functioning: a synergetic approach to brain activity. Springer, New York MATHGoogle Scholar
  13. Hugenii C (1986) Horoloquim oscilatorium. Muguet, Paris; reprinted in English as: The pendulum clock, Iowa State UP, Ames Google Scholar
  14. Iasemidis L (2003) Epileptic seizure prediction and control. IEEE Trans Biomed Eng 50(5):549–558 CrossRefGoogle Scholar
  15. Iasemidis L, Sackellares J (1991) The temporal evolution of the largest Lyapunov exponent on the human epileptic cortex. In: Measuring chaos in the human brain, World Scientific, Singapore, pp 49–82 Google Scholar
  16. Iasemidis L, Olson L, Savit R, Sackellares J (1994) Time dependencies in the occurrences of epileptic seizures. Epilepsy Res 17(1):81–94 CrossRefGoogle Scholar
  17. Iasemidis L, Principe J, Czaplewski J, Gilmore R, Roper S, Sackellares J (1997) Spatiotemporal transition to epileptic seizures: a nonlinear dynamical analysis of scalp and intracranial EEG recordings. In: Silva FL, Principe JC, Almeida LB (eds) Spatiotemporal models in biological and artificial systems, pp 81–88 Google Scholar
  18. Iasemidis L, Principe J, Sackellares J (2000) Measurement and quantification of spatio-temporal dynamics of human epileptic seizures. In: Akay M (ed) Nonlinear biomedical signal processing, vol 2, pp 294–318 Google Scholar
  19. Iasemidis L, Pardalos P, Sackellares J, Shiau D (2001) Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J Comb Optim 5(1):9–26 MATHCrossRefMathSciNetGoogle Scholar
  20. Iasemidis L, Shiau D, Chaovalitwongse W, Pardalos P, Carney P, Sackellares J (2002) Adaptive seizure prediction system. Epilepsia 43:264–265 Google Scholar
  21. Iasemidis L, Pardalos P, Shiau D, Chaovalitwongse W, Narayanan K, Sabesan S, Carney P Chris Sackellares J (2003a) Prediction of human epileptic seizures based on optimization and phase changes of brain electrical activity. Optim Methods Softw 18(1):81–104 MATHCrossRefMathSciNetGoogle Scholar
  22. Iasemidis L, Prasad A, Sackellares J, Pardalos P, Shiau D (2003b) On the prediction of seizures, hysteresis and resetting of the epileptic brain: insights from models of coupled chaotic oscillators. In: Bountis T, Pneumatikos S (eds) Order and chaos, vol 8. Publishing House, Thessaloniki, pp 283–305 Google Scholar
  23. Iasemidis L, Shiau D, Chaovalitwongse W, Sackellares J, Pardalos P, Principe J, Carney P, Prasad A, Veeramani B, Tsakalis K (2003c) Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng 50(5):616–627 CrossRefGoogle Scholar
  24. Iasemidis L, Shiau D, Sackellares J, Pardalos P, Prasad A (2004) Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Trans Biomed Eng 51(3):493–506 CrossRefGoogle Scholar
  25. Iasemidis L, Tsakalis K, Sackellares J, Pardalos P (2005) Comment on “Inability of Lyapunov exponents to predict epileptic seizures”. Phys Rev Lett 94(1):19801 CrossRefGoogle Scholar
  26. Kostelich EJ (1992) Problems in estimating dynamics from data. Physica D: Nonlinear Phenom 58(1–4):138–152 CrossRefMathSciNetGoogle Scholar
  27. Lee K, Schubert P, Heinemann U (1984) The anticonvulsive action of adenosine: a postsynaptic, dendritic action by a possible endogenous anticonvulsant. Brain Res 321(1):160–164 CrossRefGoogle Scholar
  28. McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846 CrossRefGoogle Scholar
  29. Medvedev A (2002) Epileptiform spikes desynchronize and diminish fast (gamma) activity of the brain an “anti-binding”-mechanism. Brain Res Bull 58(1):115–128 CrossRefGoogle Scholar
  30. Olson L, Iasemidis L, Sackellares J (1989) Evidence that interseizure intervals exhibit low dimensional non-random dynamics. Epilepsia 30(5):644 Google Scholar
  31. Packard N, Crutchfield J, Farmer J, Shaw R (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716 CrossRefGoogle Scholar
  32. Panter P (1965) Modulation, noise, and spectral analysis: applied to information transmission. McGraw-Hill, New York Google Scholar
  33. Pardalos P, Rosen J (1987) Constrained global optimization: algorithms and applications. Springer, New York MATHGoogle Scholar
  34. Prasad A, Iasemidis L, Sabesan S, Tsakalis K (2005) Dynamical hysteresis and spatial synchronization in coupled non-identical chaotic oscillators. Pramana J Phys 64(4):513–523 CrossRefGoogle Scholar
  35. Prince D, Jacobs K (1998) Inhibitory function in two models of chronic epileptogenesis. Epilepsy Res 32(1–2):83–92 CrossRefGoogle Scholar
  36. Rosenblum M, Kurths J (1998) Analysing synchronization phenomena from bivariate data by means of the Hilbert transform. In: Kantz H, Kurths J, Mayer-Kress G. (eds) Nonlinear analysis of physiological data. Springer, Berlin, pp 91–99 Google Scholar
  37. Rosenblum M, Pikovsky A, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76(11):1804–1807 CrossRefGoogle Scholar
  38. Sabesan S, Narayanan K, Prasad A, Spanias A, Sackellares J, Iasemidis L (2003) Predictability of epileptic seizures: a comparative study using Lyapunov exponent and entropy based measures. Biomed Sci Instrum 39:129–35 Google Scholar
  39. Sabesan S, Chakravarthy N, Good L, Tsakalis K, Pardalos P, Iasemidis L (2007) Global optimization and spatial synchronization prior to epileptic seizures. In: Pardalos P, Alves C, Vicente L (eds) Optimization in biomedicine. Springer optimization and its applications series, vol 12. Springer, Berlin, pp 103–125 CrossRefGoogle Scholar
  40. Sackellares J, Iasemidis L, Shiau D, Gilmore R, Roper S (2000) Epilepsy when chaos fails. In: Lehnertz K, Arnhold J, Grassberger P, Elger CE (eds) Chaos in the brain? World Scientific, Singapore, pp 112–133 Google Scholar
  41. Shiau D, Luo Q, Gilmore R, Roper S, Pardalos P, Sackellares J, Iasemidis L (2000) Epileptic seizures resetting revisited. Epilepsia 41(Suppl 7):208 Google Scholar
  42. Takens F (1980) Detecting strange attractors in turbulence. In: Dynamical systems and turbulence, proc symp, Coventry Google Scholar
  43. Traub RD, Contreras D, Whittington MA (2005) Combined experimental/simulation studies of cellular and network mechanisms of epileptogenesis in vitro and in vivo. J Clin Neurophysiol 22(5):330–342 Google Scholar
  44. Tsakalis K, Iasemidis LD (2006) Control aspects of a theoretical model for epileptic seizures. Int J Bifurc Chaos 16(7):2013–2027 CrossRefMathSciNetGoogle Scholar
  45. Tsakalis K, Chakravarthy N, Sabesan S, Iasemidis LD, Pardalos PM (2006) A feedback control systems view of epileptic seizures. Cybern Syst Anal 42(4):483–495 MATHCrossRefGoogle Scholar
  46. Vastano J, Kostelich E (1986) Comparison of algorithms for determining Lyapunov exponents from experimental data. In: Mayer-Kress G (ed) Dimensions and entropies in chaotic systems: quantification of complex behavior, pp 100–107 Google Scholar
  47. Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition. Eur J Neurosci 15(9):1499–1508 CrossRefGoogle Scholar
  48. Wolf A, Swift J, Swinney H, Vastano J (1985) Determining Lyapunov exponents from a time series. Physica D 16(3):285–317 MATHCrossRefMathSciNetGoogle Scholar
  49. Zhou J, Lenck-Santini P, Holmes G (2007) Postictal single-cell firing patterns in the hippocampus. Epilepsia 48(4):713–719 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shivkumar Sabesan
    • 1
  • Niranjan Chakravarthy
    • 1
  • Kostas Tsakalis
    • 1
  • Panos Pardalos
    • 3
  • Leon Iasemidis
    • 2
  1. 1.Department of Electrical EngineeringArizona State UniversityTempeUSA
  2. 2.The Harrington Department of BioengineeringArizona State UniversityTempeUSA
  3. 3.Department of Industrial and Systems EngineeringUniversity of FloridaGainsvilleUSA

Personalised recommendations