Effects of a standardized distraction on caregivers’ perceptive performance with avatar-based and conventional patient monitoring: a multicenter comparative study

Abstract

Patient monitoring requires constant attention and may be particularly vulnerable to distractions, which frequently occur during perioperative work. In this study, we compared anesthesia providers’ perceptive performance and perceived workload under distraction for conventional and avatar-based monitoring, a situation awareness-based technology that displays patient status as an animated patient model. In this prospective, multicenter study with a within-subject design, 38 participants evaluated scenarios of 3- and 10-s durations using conventional and avatar-based monitoring, under standardized distraction in the form of a simple calculation task. We quantified perceptual performance as the number of vital signs correctly remembered out of the total of 11 vital signs shown. We quantified perceived workload using the National Aeronautics and Space Administration Task Load Index score. Anesthesia providers remembered more vital signs under distraction using the avatar monitoring technology in the 3-s scenario: 6 (interquartile range [IQR] 5–7) vs. 3 (IQR 2–4), p < 0.001, mean of differences (MoD): 3 (95% confidence interval [95% CI] 1 to 4), and in the 10-s monitoring task: 6 (IQR 5–8) vs. 4 (IQR 2–7), p = 0.028, MoD: 1 (95% CI 0.2 to 3). Participants rated perceived workload lower under distraction with the avatar in the 3-s scenario: 65 (IQR 40–79) vs. 75 (IQR 51–88), p = 0.007, MoD: 9 (95% CI 3 to 15), and in the 10-s scenario: 68 (IQR 50–80) vs. 75 (IQR 65–86), p = 0.019, MoD: 10 (95% CI 2 to 18). Avatar-based monitoring improved anesthesia providers’ perceptive performance under distraction and reduced perceived workload. This technology could help to improve caregivers’ situation awareness, especially in high-workload situations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CO2 :

Carbon dioxide

PASAT:

Paced auditory serial additions test

NASA:

National Aeronautics and Space Administration

TLX:

Task Load Index

MoD:

Mean of differences

95% CI:

95% Confidence interval

IQR:

Interquartile range

References

  1. 1.

    Campbell G, Arfanis K, Smith AF. Distraction and interruption in anaesthetic practice. Br J Anaesth. 2012;109:707–15.

    CAS  Article  Google Scholar 

  2. 2.

    van Pelt M, Weinger MB. Distractions in the anesthesia work environment: impact on patient safety? Report of a meeting sponsored by the anesthesia patient safety foundation. Anesth Analg. 2017;125:347–50.

    Article  Google Scholar 

  3. 3.

    Slagle JM, Porterfield ES, Lorinc AN, Afshartous D, Shotwell MS, Weinger MB. Prevalence of potentially distracting noncare activities and their effects on vigilance, workload, and nonroutine events during anesthesia care. Anesthesiology. 2018;128:44–54.

    Article  Google Scholar 

  4. 4.

    Wheelock A, Suliman A, Wharton R, et al. The impact of operating room distractions on stress, workload, and teamwork. Ann Surg. 2015;261:1079–84.

    Article  Google Scholar 

  5. 5.

    Broom MA, Capek AL, Carachi P, Akeroyd MA, Hilditch G. Critical phase distractions in anaesthesia and the sterile cockpit concept. Anaesthesia. 2011;66:175–9.

    CAS  Article  Google Scholar 

  6. 6.

    Schulz CM, Endsley MR, Kochs EF, Gelb AW, Wagner KJ. Situation awareness in anesthesia: concept and research. Anesthesiology. 2013;118:729–42.

    Article  Google Scholar 

  7. 7.

    Endsley M, Jones D. Designing for situation awareness: an approach to user-centered design. Boca Raton: CRC Press Inc.; 2011.

    Google Scholar 

  8. 8.

    Fioratou E, Flin R, Glavin R, Patey R. Beyond monitoring: distributed situation awareness in anaesthesia. Br J Anaesth. 2010;105:83–90.

    CAS  Article  Google Scholar 

  9. 9.

    Craik FI. Effects of distraction on memory and cognition: a commentary. Front Psychol. 2014;5:841.

    Article  Google Scholar 

  10. 10.

    McKinley J, Dempster M, Gormley GJ. ‘Sorry, I meant the patient’s left side’: impact of distraction on left-right discrimination. Med Educ. 2015;49:427–35.

    Article  Google Scholar 

  11. 11.

    Lee K, Kim MJ, Park J, et al. The effect of distraction by dual work on a CPR practitioner’s efficiency in chest compression: a randomized controlled simulation study. Medicine (Baltimore). 2017;96:e8268.

    Article  Google Scholar 

  12. 12.

    McGowan G, Jawaheer L, Young D, Yorston D. QUIET PLEASE! Effect of distraction on simulated posterior segment surgical performance. Graefes Arch Clin Exp Ophthalmol. 2018;256:519–23.

    Article  Google Scholar 

  13. 13.

    Yang C, Heinze J, Helmert J, Weitz J, Reissfelder C, Mees ST. Impaired laparoscopic performance of novice surgeons due to phone call distraction: a single-centre, prospective study. Surg Endosc. 2017;31:5312–7.

    Article  Google Scholar 

  14. 14.

    Sanderson PM, Watson MO, Russell WJ. Advanced patient monitoring displays: tools for continuous informing. Anesth Analg. 2005;101:161–8.

    Article  Google Scholar 

  15. 15.

    Drews FA, Westenskow DR. The right picture is worth a thousand numbers: data displays in anesthesia. Hum Factors. 2006;48:59–71.

    Article  Google Scholar 

  16. 16.

    Rayner K. Eye movements in reading and information processing: 20 years of research. Psychol Bull. 1998;124:372–422.

    CAS  Article  Google Scholar 

  17. 17.

    Tscholl DW, Handschin L, Neubauer P, et al. Using an animated patient avatar to improve perception of vital sign information by anaesthesia professionals. Br J Anaesth. 2018;121:662–71.

    CAS  Article  Google Scholar 

  18. 18.

    Tscholl DW, Weiss M, Handschin L, Spahn DR, Noethiger CB. User perceptions of avatar-based patient monitoring: a mixed qualitative and quantitative study. BMC Anesthesiol. 2018;18:188.

    Article  Google Scholar 

  19. 19.

    Loeb RG. Monitor surveillance and vigilance of anesthesia residents. Anesthesiology. 1994;80:527–33.

    CAS  Article  Google Scholar 

  20. 20.

    Ford S, Birmingham E, King A, Lim J, Ansermino JM. At-a-glance monitoring: covert observations of anesthesiologists in the operating room. Anesth Analg. 2010;111:653–8.

    Article  Google Scholar 

  21. 21.

    Degani A, Jorgensen CC, Shafto M, Olson L. On organization of information: approach and early work. Cambridge: MIT Press; 2009.

    Google Scholar 

  22. 22.

    Wittgenstein L. Tractatus logico-philosophicus. London: Routledge & Kegan Paul; 1922.

    Google Scholar 

  23. 23.

    Tombaugh TN. A comprehensive review of the Paced Auditory Serial Addition Test (PASAT). Arch Clin Neuropsychol. 2006;21:53–76.

    Article  Google Scholar 

  24. 24.

    Hart SG, Stavenland LE. Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Hancock PA, Meshkati N, editors. Human mental workload. Amsterdam: Elsevier; 1988. p. 139–83.

    Google Scholar 

  25. 25.

    Hart S. Nasa-task load index (Nasa-TLX); 20 years later human factors and ergonomics society annual meeting, 2006.

  26. 26.

    Endsley M, Garland D. Situation awareness analysis and measurement. Boca Raton: CRC Press Inc; 2000.

    Google Scholar 

  27. 27.

    Tscholl DW, Weiss M, Spahn DR, Noethiger CB. How to conduct multimethod field studies in the operating room: the iPad combined with a survey app as a valid and reliable data collection tool. JMIR Res Protoc. 2016;5:e4.

    Article  Google Scholar 

  28. 28.

    Reason J. Human error: models and management. BMJ. 2000;320:768–70.

    CAS  Article  Google Scholar 

  29. 29.

    Tscholl DW, Handschin L, Roessler J, Weiss M, Spahn DR, Noethiger CB. It’s not you, it’s the design—common problems with patient monitoring reported by anesthesiologists: a mixed qualitative and quantitative study. BMC Anesthesiol. 2019;19:87.

    Article  Google Scholar 

  30. 30.

    Gaba DM, Howard SK, Small SD. Situation awareness in anesthesiology. Hum Factors. 1995;37:20–31.

    CAS  Article  Google Scholar 

  31. 31.

    Schulz CM, Krautheim V, Hackemann A, Kreuzer M, Kochs EF, Wagner KJ. Situation awareness errors in anesthesia and critical care in 200 cases of a critical incident reporting system. BMC Anesthesiol. 2016;16:4.

    Article  Google Scholar 

  32. 32.

    Schulz CM, Burden A, Posner KL, et al. Frequency and type of situational awareness errors contributing to death and brain damage: a closed claims analysis. Anesthesiology. 2017;127:326–37.

    Article  Google Scholar 

  33. 33.

    United States Federal Aviation Regulation 121.542/135.100, “Flight crewmember duties.” Federal Aviation Administration. 1981.

  34. 34.

    European Union Commission Regulation (EU) No 965/2012 on air operations. European Aviation Safety Agency. 2012.

  35. 35.

    Gurushanthaiah K, Weinger M, Englund C. Visual display format affects the ability of anesthesiologists to detect acute physiologic changes: a laboratory study employing a clinical display simulator. Anesthesiology. 1995;83(6):1184–93.

    CAS  Article  Google Scholar 

  36. 36.

    Blike GT, Surgenor SD, Whalen K. A graphical object display improves anesthesiologists’ performance on a simulated diagnostic task. J Clin Monit Comput. 1999;15(1):37–44.

    CAS  Article  Google Scholar 

  37. 37.

    Agutter J, Drews F, Syroid N, Westneskow D, Albert R, Strayer D, Bermudez J, Weinger MB. Evaluation of graphic cardiovascular display in a high-fidelity simulator. Anesth Analg. 2003;97(5):1403–13 PubMed PMID: 14570658.

    Article  Google Scholar 

  38. 38.

    Wachter SB, Johnson K, Albert R, Syroid N, Drews F, Westenskow D. The evaluation of a pulmonary display to detect adverse respiratory events using high resolution human simulator. J Am Med Inform Assoc. 2006;13(6):635–42.

    Article  Google Scholar 

  39. 39.

    Görges M, Staggers N. Evaluations of physiological monitoring displays: a systematic review. J Clin Monit Comput. 2008;22(1):45–66.

    Article  Google Scholar 

  40. 40.

    Kamaleswaran R, McGregor C. A review of visual representations of physiologic data. JMIR Med Inform. 2016;4(4):e31.

    Article  Google Scholar 

  41. 41.

    Wachter SB, Agutter J, Syroid N, Drews F, Weinger MB, Westenskow D. The employment of an iterative design process to develop a pulmonary graphical display. J Am Med Inform Assoc. 2003;10(4):363–72.

    Article  Google Scholar 

  42. 42.

    Pfarr J, Ganter MT, Spahn DR, Noethiger CB, Tscholl DW. Avatar-based patient monitoring with peripheral vision: a multicenter comparative eye-tracking study. J Med Internet Res. 2019;21(7):e13041.

    Article  Google Scholar 

Download references

Funding

Institute of Anesthesiology, University, and University Hospital Zurich: institutional funding. Institute of Anesthesiology and Pain Therapy, Cantonal Hospital Winterthur: institutional funding. University of Zurich: Proof of concept funding (UZ16/288POC). University of Zurich: DWT career development grant.

Author information

Affiliations

Authors

Contributions

JP: helped design the study, collect the data, analyze the data, write the article and approved the final version. MTG: helped collect the data, write the article and approved the final version. DRS: helped design the study, write the article and approved the final version. CBN: helped design the study, collect the data, analyze the data, write the article and approved the final version. DWT: helped design the study, collect the data, analyze the data, write the article and approved the final version.

Corresponding author

Correspondence to David W. Tscholl.

Ethics declarations

Conflict of interest

The University of Zurich and Koninklijke Philips N.V., Amsterdam entered a joint development and licensing agreement to develop an avatar-based product. As part of this agreement, the authors DWT and CBN may receive royalties.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 105650 kb)

10877_2019_429_MOESM2_ESM.m4v

Supplementary material 2 (M4 V 74258 kb)

Supplementary material 2 (M4 V 74258 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pfarr, J., Ganter, M.T., Spahn, D.R. et al. Effects of a standardized distraction on caregivers’ perceptive performance with avatar-based and conventional patient monitoring: a multicenter comparative study. J Clin Monit Comput 34, 1369–1378 (2020). https://doi.org/10.1007/s10877-019-00429-2

Download citation

Keywords

  • Situation awareness
  • Patient monitoring
  • Computer-assisted diagnosis
  • Visual patient