Transpulmonary thermodilution before and during veno-venous extra-corporeal membrane oxygenation ECMO: an observational study on a potential loss of indicator into the extra-corporeal circuit

Abstract

Haemodynamic monitoring before extra-corporeal membrane oxygenation (ECMO) might help to optimize the effectiveness of ECMO. However, there are concerns that pulmonary arterial and trans-pulmonary thermodilution (TPTD) might be confounded by a loss of indicator into the ECMO-circuit, resulting in an overestimation of volumetric parameters. Since there is a lack of data on indicator dilution techniques during ECMO, we compared TPTD-measurements before and during ECMO. TPTD-derived parameters before and after initiation of ECMO were compared in 14 intensive care unit-patients with veno-venous ECMO and TPTD-monitoring (PiCCO®). Eight patients had a jugular and six patients a femoral central venous catheter (CVC). Cardiac index, global end-diastolic volume index (GEDVI) and extra-vascular lung water index (EVLWI) before ECMO as well as the ECMO-flow were comparable in patients with jugular and femoral CVC. Pre-ECMO, cardiac index (CI) was not significantly different compared to values during ECMO (4.5 ± 1.7 vs. 4.4 ± 2.1 L/min/m2; p = 0.43). By contrast, GEDVI (791 ± 179 vs. 974 ± 384 mL/m2; p = 0.04) and EVLWI (21 ± 9 vs. 28 ± 11 mL/kg; p < 0.01) were higher during ECMO than before. Increases in GEDVI (36 ± 210 vs. 378 ± 247 mL/m2; p = 0.02) and EVLWI (3 ± 2 vs. 11 ± 8 mL/kg; p = 0.06) were substantially more pronounced in patients with femoral compared to jugular indicator injection. In multivariate analysis, femoral indicator injection was independently associated with larger increases in GEDVI (p < 0.01) and EVLWI (p = 0.04) during ECMO. However, CI and haemodynamic parameters not derived from TPTD, but from pulse contour analysis (systolic and diastolic arterial pressure, stroke volume variation and pulse pressure variation) were not affected by the start of ECMO. Our study demonstrates marked increases in GEDVI and EVLWI after the onset of ECMO. These increases were more pronounced for femoral compared to jugular indicator injection. CI and haemodynamic parameters not derived from TPTD were not affected by the extra-corporeal circuit.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AP:

Arterial pressure

ARDS:

Acute respiratory distress syndrome

PBV:

Pulmonary blood volume

CI:

Cardiac index

CO:

Cardiac output

CPI:

Cardiac power index

CV:

Controlled ventilation

CVC:

Central venous catheter

CVP:

Central venous pressure

DST:

Downslope time

Ea_dyn:

Dynamic arterial elastance

ECMO:

Extra-corporeal membrane oxygenation

EVLWI:

Extra-vascular lung water index

GEDVI:

Global end-diastolic volume index

HPS:

Hepatopulmonary syndrome

ICU:

Intensive care unit

LOI:

Loss of indicator

MTT:

Mean transit time

PAC:

Pulmonary arterial catheter

PCA:

Pulse contour analysis

PBV:

Pulmonary blood volume

PPV:

Pulse pressure variation

PTT:

Partial thromboplastin time

PTV:

Pulmonary thermal volume

PVPI:

Pulmonary vascular permeability index

RCT:

Randomized controlled trial

SR:

Sinus rhythm

SVV:

Stroke volume variation

TPTD:

Trans-pulmonary thermodilution

ITTV:

Intra-thoracic thermal volume

Vv:

Veno-venous

References

  1. 1.

    Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, Hibbert CL, Truesdale A, Clemens F, Cooper N, Firmin RK, Elbourne D. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351–63. https://doi.org/10.1016/s0140-6736(09)61069-2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Guervilly C, Da Silva D, Zafrani L, Tirot P, Veber B, Maury E, Levy B, Cohen Y, Richard C, Kalfon P, Bouadma L, Mehdaoui H, Beduneau G, Lebreton G, Brochard L, Ferguson ND, Fan E, Slutsky AS, Brodie D, Mercat A. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75. https://doi.org/10.1056/nejmoa1800385.

    Article  PubMed  Google Scholar 

  3. 3.

    Romagnoli S, Zagli G, Ricci Z, Villa G, Barbani F, Pinelli F, De Gaudio R, Chelazzi C. Cardiac output: a central issue in patients with respiratory extracorporeal support. Perfusion. 2017;32(1):44–9. https://doi.org/10.1177/0267659116658112.

    Article  PubMed  Google Scholar 

  4. 4.

    Huber W, Hollthaler J, Schuster T, Umgelter A, Franzen M, Saugel B, Cordemans C, Schmid RM, Malbrain ML. Association between different indexations of extravascular lung water (EVLW) and PaO2/FiO2: a two-center study in 231 patients. PLoS ONE. 2014;9(8):e103854. https://doi.org/10.1371/journal.pone.0103854.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, Teboul JL, Monnet X. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472–80. https://doi.org/10.1097/ccm.0b013e31826ab377.

    Article  PubMed  Google Scholar 

  6. 6.

    Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Huber W, Malbrain ML. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2(Suppl 1):S1. https://doi.org/10.1186/2110-5820-2-s1-s1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Martin G, Huber W, Malbrain ML. Aiming for a negative fluid balance in patients with acute lung injury and increased intra-abdominal pressure: a pilot study looking at the effects of PAL-treatment. Ann Intensive Care. 2012;2(Suppl 1):S15. https://doi.org/10.1186/2110-5820-2-s1-s15.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Haller M, Zollner C, Manert W, Briegel J, Kilger E, Polasek J, Hummel T, Forst H, Peter K. Thermodilution cardiac output may be incorrect in patients on venovenous extracorporeal lung assist. Am J Respir Crit Care Med. 1995;152(6 Pt 1):1812–7. https://doi.org/10.1164/ajrccm.152.6.8520741.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Huber W, Fuchs S, Minning A, Kuchle C, Braun M, Beitz A, Schultheiss C, Mair S, Phillip V, Schmid S, Schmid RM, Lahmer T. Transpulmonary thermodilution (TPTD) before, during and after sustained low efficiency dialysis (SLED). A prospective study on feasibility of TPTD and prediction of successful fluid removal. PLoS ONE. 2016;11(4):e0153430. https://doi.org/10.1371/journal.pone.0153430.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Sakka SG. Influence of an extracorporeal lung assist system on transpulmonary thermodilution-derived variables. Br J Anaesth. 2010;104(5):664–5. https://doi.org/10.1093/bja/aeq078.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Van Craenenbroeck A, Van Ingelgem A, Palmers PJ, Cordemans C, Van Hootegem A, Van Regenmortel N, De Laet I, Schoonheydt K, Dits H, Malbrain ML. Influence of continuous venovenous hemofiltration (CVVH) and catheter position on transpulmonary thermodilution derived parameters. Intensive Care Med. 2010;36(Supplem 2):S294.

    Google Scholar 

  12. 12.

    Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33. https://doi.org/10.1001/jama.2012.5669.

    CAS  Article  Google Scholar 

  13. 13.

    Saugel B, Umgelter A, Schuster T, Phillip V, Schmid RM, Huber W. Transpulmonary thermodilution using femoral indicator injection: a prospective trial in patients with a femoral and a jugular central venous catheter. Crit Care. 2010;14(3):R95. https://doi.org/10.1186/cc9030.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hofkens PJ, Verrijcken A, Merveille K, Neirynck S, Van Regenmortel N, De Laet I, Schoonheydt K, Dits H, Bein B, Huber W, Malbrain ML. Common pitfalls and tips and tricks to get the most out of your transpulmonary thermodilution device: results of a survey and state-of-the-art review. Anaesthesiol Intensive Ther. 2015;47(2):89–116. https://doi.org/10.5603/ait.a2014.0068.

    Article  PubMed  Google Scholar 

  15. 15.

    Malbrain ML, De Potter TJ, Dits H, Reuter DA. Global and right ventricular end-diastolic volumes correlate better with preload after correction for ejection fraction. Acta Anaesthesiol Scand. 2010;54(5):622–31. https://doi.org/10.1111/j.1399-6576.2009.02202.x.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Combes A, Brodie D, Bartlett R, Brochard L, Brower R, Conrad S, De Backer D, Fan E, Ferguson N, Fortenberry J, Fraser J, Gattinoni L, Lynch W, MacLaren G, Mercat A, Mueller T, Ogino M, Peek G, Pellegrino V, Pesenti A, Ranieri M, Slutsky A, Vuylsteke A. Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med. 2014;190(5):488–96. https://doi.org/10.1164/rccm.201404-0630cp.

    Article  PubMed  Google Scholar 

  17. 17.

    Tagami T, Nakamura T, Kushimoto S, Tosa R, Watanabe A, Kaneko T, Fukushima H, Rinka H, Kudo D, Uzu H, Murai A, Takatori M, Izumino H, Kase Y, Seo R, Takahashi H, Kitazawa Y, Yamaguchi J, Sugita M, Kuroki Y, Kanemura T, Morisawa K, Saito N, Irahara T, Yokota H. Early-phase changes of extravascular lung water index as a prognostic indicator in acute respiratory distress syndrome patients. Ann Intensive Care. 2014;4:27. https://doi.org/10.1186/s13613-014-0027-7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122(6):2080–6. https://doi.org/10.1378/chest.122.6.2080.

    Article  PubMed  Google Scholar 

  19. 19.

    Craig TR, Duffy MJ, Shyamsundar M, McDowell C, McLaughlin B, Elborn JS, McAuley DF. Extravascular lung water indexed to predicted body weight is a novel predictor of intensive care unit mortality in patients with acute lung injury. Crit Care Med. 2010;38(1):114–20. https://doi.org/10.1097/ccm.0b013e3181b43050.

    Article  PubMed  Google Scholar 

  20. 20.

    Phillips CR, Chesnutt MS, Smith SM. Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival. Crit Care Med. 2008;36(1):69–73. https://doi.org/10.1097/01.ccm.0000295314.01232.be.

    Article  PubMed  Google Scholar 

  21. 21.

    Berkowitz DM, Martin G. Extravascular lung water measurement in acute respiratory distress syndrome. Crit Care Med. 2009;37(1):378. https://doi.org/10.1097/ccm.0b013e31818f292f.

    Article  PubMed  Google Scholar 

  22. 22.

    Groeneveld AB, Verheij J. Extravascular lung water to blood volume ratios as measures of permeability in sepsis-induced ALI/ARDS. Intensive Care Med. 2006;32(9):1315–21. https://doi.org/10.1007/s00134-006-0212-8.

    Article  PubMed  Google Scholar 

  23. 23.

    Lahmer T, Mayr U, Rasch S, Batres Baires G, Schmid RM, Huber W. In-parallel connected intermittent hemodialysis through ECMO does not affect hemodynamic parameters derived from transpulmonary thermodilution. Perfusion. 2017;32(8):702–5. https://doi.org/10.1177/0267659117707816.

    Article  PubMed  Google Scholar 

  24. 24.

    Pathil A, Stremmel W, Schwenger V, Eisenbach C. The influence of haemodialysis on haemodynamic measurements using transpulmonary thermodilution in patients with septic shock: an observational study. Eur J Anaesthesiol. 2013;30(1):16–20. https://doi.org/10.1097/eja.0b013e328358543a.

    Article  PubMed  Google Scholar 

  25. 25.

    Compton F, Hoffmann C, Zidek W, Schmidt S, Schaefer JH. Volumetric hemodynamic parameters to guide fluid removal on hemodialysis in the intensive care unit. Hemodial Int. 2007;11(2):231–7. https://doi.org/10.1111/j.1542-4758.2007.00174.x.

    Article  PubMed  Google Scholar 

  26. 26.

    Compton F, Vogel M, Zidek W, van der Giet M, Westhoff T. Changes in volumetric hemodynamic parameters induced by fluid removal on hemodialysis in critically ill patients. Ther Apher Dial. 2015;19(1):23–9. https://doi.org/10.1111/1744-9987.12193.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Kuhn C, Kuhn A, Rykow K, Osten B. Extravascular lung water index: a new method to determine dry weight in chronic hemodialysis patients. Hemodial Int. 2006;10(1):68–72. https://doi.org/10.1111/j.1542-4758.2006.01177.x.

    Article  PubMed  Google Scholar 

  28. 28.

    De Laet I, Deeren D, Schoonheydt K, Van Regenmortel N, Dits H, Malbrain ML. Renal replacement therapy with net fluid removal lowers intra-abdominal pressure and volumetric indices in critically ill patients. Ann Intensive Care. 2012;2(Suppl 1):S20. https://doi.org/10.1186/2110-5820-2-s1-s20.

    Article  PubMed  Google Scholar 

  29. 29.

    Redwan B, Ziegeler S, Freermann S, Meemann T, Semik M, Dickgerber N, Fischer S. Single-site low-flow veno-venous extracorporeal lung support does not influence hemodynamic monitoring by transpulmonary thermodilution. ASAIO J. 2016;62(4):454–7. https://doi.org/10.1097/mat.0000000000000379.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Haller M, Zollner C, Briegel J, Forst H. Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med. 1995;23(5):860–6.

    CAS  Article  Google Scholar 

  31. 31.

    Sakka SG, Ruhl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26(2):180–7.

    CAS  Article  Google Scholar 

  32. 32.

    Linton RA, Band DM, Haire KM. A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth. 1993;71(2):262–6. https://doi.org/10.1093/bja/71.2.262.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Picano E, Pellikka PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J. 2016;37(27):2097–104. https://doi.org/10.1093/eurheartj/ehw164.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Huber.

Ethics declarations

Conflict of interest

Wolfgang Huber collaborates with Pulsion Medical Systems SE, Feldkirchen, Germany as Member of the Medical Advisory Board. All other authors declare that they have no competing interests.

Ethical approval

The Institutional Review Board approved the study (Ethikkommission; Fakultät für Medizin; Technische Universität München 310/18S).

Informed consent

The need for informed consent was waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Supplementary material 2 (DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herner, A., Lahmer, T., Mayr, U. et al. Transpulmonary thermodilution before and during veno-venous extra-corporeal membrane oxygenation ECMO: an observational study on a potential loss of indicator into the extra-corporeal circuit. J Clin Monit Comput 34, 923–936 (2020). https://doi.org/10.1007/s10877-019-00398-6

Download citation

Keywords

  • Extra-corporeal membrane oxygenation
  • Trans-pulmonary thermodilution
  • Cardiac output
  • Pulse contour analysis
  • Global end-diastolic volume index
  • Extra-vascular lung water index