Skip to main content

Advertisement

Log in

The impact of obesity on pulmonary deterioration in patients undergoing robotic-assisted laparoscopic prostatectomy

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Obesity affects respiratory and hemodynamic function in anesthetized patients. The aim of this study was to evaluate the influence of the body mass index (BMI) on pulmonary changes in a permanent 45° steep Trendelenburg position (STP) during robotic-assisted laparoscopic prostatectomy (RALP). 51 patients undergoing RALP under standardized anesthesia were included. Perioperative pulmonary function and oxygenation were measured in awake patients (T0), 20 min after the induction of anesthesia (T1), after insufflation of the abdomen in supine position (T2), after 30 min in STP (T3), when controlling Santorini’s plexus in STP (T4), before awakening while supine (T5), and after 45 min in the recovery room (T6). Patient-specific and time-dependent factor on ventilation and predicted peak inspiratory pressure (PIP), driving pressure (Pdriv) and lung compliance (LC) in a linear regression model were calculated. PIP and Pdriv increased significantly after induction of capnoperitoneum (T2–4) (p < 0.0001). In univariate mixed effects models, BMI was found to be a significant predictor for PIP and Pdriv increase and LC decrease. Obese patients a BMI > 31 kg/m2 reached critical PIP values ≥ 35 cmH2O. Postoperative oxygenation represented by the PaO2/FiO2 ratio was significantly decreased compared to T0 (p < 0.0001). Obesity in combination with STP and capnoperitoneum during RALP has a profound effect on pulmonary function. Increased PIP and Pdriv and decreased LC are directly correlated with a high BMI. Changes in PIP, Pdriv and LC during RALP may be predicted in relation to patient’s BMI for consideration in the preoperative setting. Trial registration number Z-2014-0387-6. Registered on 8 July 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ASA:

American Society of Anesthesia

BE:

Base excess

BMI:

Body mass index

etCO2 :

End tidal CO2

FiO2 :

Inspiratory fraction of oxygen

LC:

Lung compliance

MAP:

Mean arterial blood pressure

MV:

Minute ventilation

PaCO2 :

Partial arterial carbon dioxide fraction

PaO2 :

Partial arterial oxygen fraction

Pdriv :

Driving pressure

PEEP:

Positive end-expiratory pressure

PIP:

Peak inspiratory pressure

RALP:

Robotic-assisted laparoscopic prostatectomy

STP:

Steep Trendelenburg position

TIVA:

Total intravenous anesthesia

TOF:

Train-of-four

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Ficarra V, Novara G, Artibani W, Cestari A, Galfano A, Graefen M, et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol. 2009;55:1037–63.

    Article  PubMed  Google Scholar 

  3. Porpiglia F, Morra I, Lucci Chiarissi M, Manfredi M, Mele F, Grande S, et al. Randomised controlled trial comparing laparoscopic and robot-assisted radical prostatectomy. Eur Urol. 2013;63:606–14.

    Article  PubMed  Google Scholar 

  4. Novara G, Ficarra V, Rosen RC, Artibani W, Costello A, Eastham JA, et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur Urol. 2012;62:431–52.

    Article  PubMed  Google Scholar 

  5. Gainsburg DM. Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy. Minerva Anestesiol. 2012;78:596–604.

    CAS  PubMed  Google Scholar 

  6. Consultation on Obesity. Obesity: preventing and managing the global epidemic: report of a WHO consultation. Geneva: WHO; 2000.

    Google Scholar 

  7. Mensink GBM, Schienkiewitz A, Haftenberger M, Lampert T, Ziese T, Scheidt-Nave C. Ubergewicht und Adipositas in Deutschland: Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2013;56:786–94.

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt AM. The growing problem of obesity: mechanisms, consequences, and therapeutic approaches. Arterioscler Thromb Vasc Biol. 2015;35:e19–23.

    Article  CAS  PubMed  Google Scholar 

  9. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38.

    Article  PubMed  Google Scholar 

  10. Rodriguez C, Patel AV, Calle EE, Jacobs EJ, Chao A, Thun MJ. Body mass index, height, and prostate cancer mortality in two large cohorts of adult men in the United States. Cancer Epidemiol Biomark Prev. 2001;10:345–53.

    CAS  Google Scholar 

  11. MacInnis RJ, English DR. Body size and composition and prostate cancer risk: systematic review and meta-regression analysis. Cancer Causes Control. 2006;17:989–1003.

    Article  PubMed  Google Scholar 

  12. Pelosi P, Croci M, Ravagnan I, Vicardi P, Gattinoni L. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest 1996;109:144–51.

    Article  CAS  PubMed  Google Scholar 

  13. Mandal S, Hart N. Respiratory complications of obesity. Clin Med. 2012;12:75–8.

    Article  Google Scholar 

  14. Melo LC, Silva, MAMd, Calles ACdN. Obesity and lung function: a systematic review. Einstein. 2014;12:120–5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gabrielsen A-M, Lund MB, Kongerud J, Viken KE, Røislien J, Hjelmesæth J. The relationship between anthropometric measures, blood gases, and lung function in morbidly obese white subjects. Obes Surg. 2011;21:485–91.

    Article  PubMed  Google Scholar 

  16. Hodgson LE, Murphy PB, Hart N. Respiratory management of the obese patient undergoing surgery. J Thorac Dis. 2015;7:943–52.

    PubMed  PubMed Central  Google Scholar 

  17. Pelosi P, Croci M, Ravagnan I, Tredici S, Pedoto A, Lissoni A, Gattinoni L. The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anesth Analg. 1998;87:654–60.

    CAS  PubMed  Google Scholar 

  18. Meininger D, Westphal K, Bremerich DH, Runkel H, Probst M, Zwissler B, Byhahn C. Effects of posture and prolonged pneumoperitoneum on hemodynamic parameters during laparoscopy. World J Surg. 2008;32:1400–5.

    Article  PubMed  Google Scholar 

  19. Hanberger H, Walther S, Leone M, Barie PS, Rello J, Lipman J, et al. Increased mortality associated with methicillin-resistant Staphylococcus aureus (MRSA) infection in the intensive care unit: results from the EPIC II study. Int J Antimicrob Agents. 2011;38:331–5.

    Article  CAS  PubMed  Google Scholar 

  20. Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med. 2005;31:922–6.

    Article  PubMed  Google Scholar 

  21. Prost N de, Ricard J-D, Saumon G, Dreyfuss D. Ventilator-induced lung injury: historical perspectives and clinical implications. Ann Intensive Care. 2011;1:28.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Holm BA, Finkelstein JN, Notter RH, editors. Lung injury: mechanisms, pathophysiology, and therapy. Boca Raton: Taylor & Francis; 2005.

    Google Scholar 

  23. Neto AS, Hemmes SNT, Barbas CSV, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4:272–80.

    Article  PubMed  Google Scholar 

  24. Ladha K, Vidal Melo MF, McLean DJ, Wanderer JP, Grabitz SD, Kurth T, Eikermann M. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ. 2015;351:h3646.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Blecha S, Harth M, Schlachetzki F, Zeman F, Blecha C, Flora P, et al. Changes in intraocular pressure and optic nerve sheath diameter in patients undergoing robotic-assisted laparoscopic prostatectomy in steep 45 degrees Trendelenburg position. BMC Anesthesiol. 2017;17:40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kilic OF, Borgers A, Kohne W, Musch M, Kropfl D, Groeben H. Effects of steep Trendelenburg position for robotic-assisted prostatectomies on intra- and extrathoracic airways in patients with or without chronic obstructive pulmonary disease. Br J Anaesth. 2014;114:70–6.

    Article  PubMed  Google Scholar 

  27. Lestar M, Gunnarsson L, Lagerstrand L, Wiklund P, Odeberg-Wernerman S. Hemodynamic perturbations during robot-assisted laparoscopic radical prostatectomy in 45 degrees Trendelenburg position. Anesth Analg. 2011;113:1069–75.

    Article  PubMed  Google Scholar 

  28. Kalmar AF, Foubert L, Hendrickx JFA, Mottrie A, Absalom A, Mortier EP, Struys MMRF. Influence of steep Trendelenburg position and CO(2) pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth. 2010;104:433–9.

    Article  CAS  PubMed  Google Scholar 

  29. Suh MK, Seong KW, Jung SH, Kim SS. The effect of pneumoperitoneum and Trendelenburg position on respiratory mechanics during pelviscopic surgery. Korean J Anesthesiol. 2010;59:329–34.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kadono Y, Yaegashi H, Machioka K, Ueno S, Miwa S, Maeda Y, et al. Cardiovascular and respiratory effects of the degree of head-down angle during robot-assisted laparoscopic radical prostatectomy. Int J Med Robot. 2013;9:17–22.

    Article  PubMed  Google Scholar 

  31. Nestler C, Simon P, Petroff D, Hammermüller S, Kamrath D, Wolf S, et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography. Br J Anaesth. 2017;119:1194–205.

    Article  CAS  PubMed  Google Scholar 

  32. Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55.

    Article  CAS  PubMed  Google Scholar 

  33. Hemmes SNT, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet. 2014;384:495–503.

    Article  PubMed  Google Scholar 

  34. Bluth T, Teichmann R, Kiss T, Bobek I, Canet J, Cinnella G, et al. Protective intraoperative ventilation with higher versus lower levels of positive end-expiratory pressure in obese patients (PROBESE): study protocol for a randomized controlled trial. Trials. 2017;18:202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tomescu DR, Popescu M, Dima SO, Bacalbasa N, Bubenek-Turconi S. Obesity is associated with decreased lung compliance and hypercapnia during robotic assisted surgery. J Clin Monit Comput. 2017;31:85–92.

    Article  PubMed  Google Scholar 

  36. Wiltz AL, Shikanov S, Eggener SE, Katz MH, Thong AE, Steinberg GD, et al. Robotic radical prostatectomy in overweight and obese patients: oncological and validated-functional outcomes. Urology. 2009;73:316–22.

    Article  PubMed  Google Scholar 

  37. Mikhail AA, Stockton BR, Orvieto MA, Chien GW, Gong EM, Zorn KC, et al. Robotic-assisted laparoscopic prostatectomy in overweight and obese patients. Urology. 2006;67:774–9.

    Article  PubMed  Google Scholar 

  38. Jaber S, Delay J-M, Chanques G, Sebbane M, Jacquet E, Souche B, et al. Outcomes of patients with acute respiratory failure after abdominal surgery treated with noninvasive positive pressure ventilation. Chest 2005;128:2688–95.

    Article  PubMed  Google Scholar 

  39. de Llano LAP, Golpe R, Piquer MO, Racamonde AV, Caruncho MV, Muinelos OC, Carro CA. Short-term and long-term effects of nasal intermittent positive pressure ventilation in patients with obesity-hypoventilation syndrome. Chest 2005;128:587–94.

    Article  Google Scholar 

  40. Slutsky AS. Lung injury caused by mechanical ventilation. Chest 1999;116:9S–15S.

    Article  CAS  PubMed  Google Scholar 

  41. Weg JG, Anzueto A, Balk RA, Wiedemann HP, Pattishall EN, Schork MA, Wagner LA. The relation of pneumothorax and other air leaks to mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:341–6.

    Article  CAS  PubMed  Google Scholar 

  42. Danic MJ, Chow M, Alexander G, Bhandari A, Menon M, Brown M. Anesthesia considerations for robotic-assisted laparoscopic prostatectomy: a review of 1,500 cases. J Robot Surg. 2007;1:119–23.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Phong SVN, Koh LKD. Anaesthesia for robotic-assisted radical prostatectomy: considerations for laparoscopy in the Trendelenburg position. Anaesth Intensive Care. 2007;35:281–5.

    Article  CAS  PubMed  Google Scholar 

  44. Díaz FJ, de La Peña E, Hernández V, López B, de La Morena JM, Martín MD, et al. Optimization of an early discharge program after laparoscopic radical prostatectomy. Actas Urol Esp. 2014;38:355–60.

    Article  PubMed  Google Scholar 

Download references

Availability of data and material

All data generated or analyzed during this study are included in this published article and are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

SB: Ethics approval, study design, data collection and analysis, drafted the manuscript and reviewed it for important intellectual content; MH: Idea for study, study design, patient recruitment, data collection and finally reviewed the manuscript for important intellectual content; FZ: Data analysis and interpretation, finally reviewed the manuscript for important intellectual content; TS: Made acquisitions, interpret data and finally reviewed the manuscript for important intellectual content; ML: Made acquisitions, interpret data and finally reviewed the manuscript for important intellectual content; MB: Made acquisitions, interpret data and finally reviewed the manuscript for important intellectual content; SD: Made acquisitions and interpret of data and finally reviewed the manuscript for important intellectual content; MP: Idea for study, study design, data collection and interpretation, patient recruitment and finally reviewed the manuscript for important intellectual content.

Corresponding author

Correspondence to Sebastian Blecha.

Ethics declarations

Conflict of interest

The authors declares that they have no competing interest in relation to this paper.

Ethics approval

This study was approved by the local institutional review board of the University of Regensburg (Protocol No. 14-101-0107) and registered at the local Center for Clinical Studies (Z-2014-0387-6. Registered on 8 July 2014).

Informed consent

After detailed explanation, written informed consent was obtained from 51 patients scheduled for elective prostatectomy at the Department of Urology in Regensburg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blecha, S., Harth, M., Zeman, F. et al. The impact of obesity on pulmonary deterioration in patients undergoing robotic-assisted laparoscopic prostatectomy. J Clin Monit Comput 33, 133–143 (2019). https://doi.org/10.1007/s10877-018-0142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-018-0142-3

Keywords

Navigation