Reference values for volumetric capnography-derived non-invasive parameters in healthy individuals

  • Gerardo Tusman
  • Emiliano Gogniat
  • Stephan H. Bohm
  • Adriana Scandurra
  • Fernando Suarez-Sipmann
  • Agustin Torroba
  • Federico Casella
  • Sergio Giannasi
  • Eduardo San Roman
Original Research


The aim of this study was to determine typical values for non-invasive volumetric capnography (VCap) parameters for healthy volunteers and anesthetized individuals. VCap was obtained by a capnograph connected to the airway opening. We prospectively studied 33 healthy volunteers 32 ± 6 years of age weighing 70 ± 13 kg at a height of 171 ± 11 cm in the supine position. Data from these volunteers were compared with a cohort of similar healthy anesthetized patients ventilated with the following settings: tidal volume (VT) of 6–8 mL/kg, respiratory rate 10-15 bpm, PEEP of 5–6 cmH2O and FiO2 of 0.5. Volunteers showed better clearance of CO2 compared to anesthetized patients as indicated by (median and interquartile range): (1) an increased elimination of CO2 per mL of VT of 0.028 (0.005) in volunteers versus 0.023 (0.003) in anesthetized patients, p < 0.05; (2) a lower normalized slope of phase III of 0.26 (0.17) in volunteers versus 0.39 (0.38) in anesthetized patients, p < 0.05; and (3) a lower Bohr dead space ratio of 0.23 (0.05) in volunteers versus 0.28 (0.05) in anesthetized patients, p < 0.05. This study presents reference values for non-invasive volumetric capnography-derived parameters in healthy individuals. Mechanical ventilation and anesthesia altered these values significantly.


Volumetric capnography CO2 Dead space Slope of phase III Mechanical ventilation 

Supplementary material

10877_2013_9433_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 22 kb)
10877_2013_9433_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 15 kb)
10877_2013_9433_MOESM3_ESM.doc (41 kb)
Supplementary material 3 (DOC 41 kb)
10877_2013_9433_MOESM4_ESM.doc (39 kb)
Supplementary material 4 (DOC 39 kb)


  1. 1.
    Bartels J, Severinghaus JW, Forster RE, Briscoe WA, Bates DV. The respiratory dead space measured by single breath analysis of oxygen, carbon dioxide, nitrogen or helium. J Clin Invest. 1954;33:41–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Fletcher R, Jonson B. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth. 1981;53:77–88.PubMedCrossRefGoogle Scholar
  3. 3.
    Breen PH, Isserles SA, Harrison BA, Roizen MF. Simple computer measurement of pulmonary VCO2 per breath. J Appl Physiol. 1992;72:2029–35.PubMedGoogle Scholar
  4. 4.
    Bohr C. Über die Lungeatmung. Skand Arch Physiol. 1891;2:236–8.CrossRefGoogle Scholar
  5. 5.
    Tusman G, Suarez Sipmann F, Bohm SH. Rationale of dead space measurement by volumetric capnography. Anesth Analg. 2012;114:866–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Tusman G, Suarez Sipmann F, Bohm SH, Borges JB, Hedenstierna G. Capnography reflects ventilation/perfusion distribution in a model of acute lung injury. Acta Anaesthesiol Scand. 2011;55:597–606.PubMedCrossRefGoogle Scholar
  7. 7.
    Tusman G, Bohm SH, Suarez Sipmann F, Scandurra A, Hedenstierna G. Lung recruitment and positive end-expiratory pressure have different effects on CO2 elimination in healthy and sick lungs. Anesth Analg. 2010;111:968–77.PubMedGoogle Scholar
  8. 8.
    Enghoff H. Volumen inefficax. Bemerkungen zur Frage des schädlichen Raumes. Uppsala Läkareforen Forhandl. 1938;44:191–218.Google Scholar
  9. 9.
    Fletcher R. Deadspace, invasive and non-invasive. Br J Anaesth. 1985;57:245–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Wagner P. Causes of high physiological dead space in critically ill patients. Crit Care. 2008;12:148–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Wolff G, Brunner JX, Weibel W, Bowes CL, Muchenberger R, Bertschmann W. Anatomical and series dead space volume: concept and measurement in clinical praxis. ACP Applied Cardiopulmonary Pathophysiology. 1989;2:299–307.Google Scholar
  12. 12.
    Tang Y, Turner MJ, Baker AB. Systematic errors and susceptibility to noise of four methods for calculating anatomical dead space from the CO2 expirogram. Br J Anaesth. 2007;98:828–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Tusman G, Scandurra A, Bohm SH, Suarez Sipmann F, Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monitor Computing. 2009;23:197–206.CrossRefGoogle Scholar
  14. 14.
    Tusman G, Suarez Sipmann F, Borges JB, Hedenstierna G, Bohm SH. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37:870–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Scherer PW, Gobran SJ, Baumgardner JE, Bartkowski R, Neufeld GR. Numerical and experimental study of steady-state CO2 and inert gas washout. J Appl Physiol. 1988;64:1022–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiological dead space measurements in patients with ARDS using volumetric capnography: comparison with the metabolic monitor method. Respir Care. 2005;50:462–7.PubMedGoogle Scholar
  17. 17.
    Fowler WS. Lung function studies II. The respiratory dead space. Am J Physiol. 1948;154:405–16.PubMedGoogle Scholar
  18. 18.
    Hlastala MP, Wranne B, Lenfant CJ. Cyclical variations in FRC and other respiratory variables in resting man. J Appl Physiol. 1973;34:670–6.PubMedGoogle Scholar
  19. 19.
    Verschuren F, Heinonen E, Clause D, Zech F, Reynaert MS, Liistro G. Volumetric capnography: reliability and reproducibility in spontaneously breathing patients. Clin Physiol Funct Imaging. 2005;25:275–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Breen PH, Isserles SA, Taitelman UZ. Non-steady state monitoring by respiratory gas exchange. J Clin Monit. 2000;16:351–60.CrossRefGoogle Scholar
  21. 21.
    Hedenstierna G, Strandberg Å, Brismar B, Lundquist H, Svensson L, Tokics L. Functional Residual Capacity, Thoracoabdominal Dimensions, and Central Blood Volume during General Anesthesia with Muscle Paralysis and Mechanical Ventilation. Anesthesiology. 1985;62:247–54.PubMedCrossRefGoogle Scholar
  22. 22.
    Hedenstierna G. Ventilation-perfusion relationships during anaesthesia. Thorax. 1995;50:85–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Brismar B, Hedenstierna G, Lundquist H, Strandberg Å, Svensson L, Tokics L. Pulmonary densities during anaesthesia with muscular relaxation - A proposal of atelectasis. Anesthesiology. 1985;62:422–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Hofbrand BI. The expiratory capnogram: a measure of ventilation-perfusion inequalities. Thorax. 1966;21:518–24.CrossRefGoogle Scholar
  26. 26.
    Blanch LL, Fernandez R, Saura P, Baigorri F, Artigas A. Relationship between expired capnogram and respiratory system resistance in critically ill patients during total ventilatory support. Eur Respir J. 1999;13:1048–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Schwardt JF, Gobran SR, Neufeld GR, Auk burg SJ, Scherer PW. Sensitivity of CO2 washout to changes in acinar structure in a single-path model of lung airways. Ann Biomed Eng. 1991;19:679–97.PubMedCrossRefGoogle Scholar
  28. 28.
    Downie SR, Salome CM, Verbank S, Thompson B, Berend N, King GG. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax. 2007;62:684–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Tusman G, Böhm SH, Suárez Sipmann F, Turchetto E. Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anesth. 2004;51:723–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Åström E, Niklason L, Drefeldt B, Bajc M, Jonson B. Partitioning of dead space – a method and reference values in the awake human. Eur Respir J. 2000;16:659–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Fletcher R, Jonson B. Deadspace and the single breath test for carbon dioxide during anaesthesia and artificial ventilation. Effects of tidal volume and frequency of respiration. Br J Anaesth. 1984;56:109–19.PubMedCrossRefGoogle Scholar
  32. 32.
    Ream RS, Schreiner MS, Neff JD, McRae KM, Jawad AF, Scherer PW, Neufeld GR. Volumetric capnography in children. Influence of growth on alveolar plateau slope. Anesthesiology. 1985;82:64–73.CrossRefGoogle Scholar
  33. 33.
    Larson CP, Severinghaus JW. Postural variations in dead space and CO2gradients breathing air and O2. J Appl Physiol. 1962;17:417–20.PubMedGoogle Scholar
  34. 34.
    Severinhaus JW, Stupfel M. Alveolar deadspace as an index of distribution of blood flow in pulmonary capillaries. J Appl Physiol. 1957;10:335–48.Google Scholar
  35. 35.
    Schulz A, Schlz H, Heilmann P, Brand P, Heyder J. Pulmonary dead space and airway dimensions in dogs at different levels of lung inflation. J Appl Physiol. 1994;76:1896–902.PubMedGoogle Scholar
  36. 36.
    Hedenstierna G, McCarthy G. The effect of anaesthesia and intermittent positive pressure ventilation with different frequencies on the anatomical and alveolar deadspace. Br J Anaesth. 1975;47:847–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Nunn JF, Hill DW. Respiratory dead space and arterial to end-tidal CO2 difference in anesthetized man. J Appl Physiol. 1960;15:383–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gerardo Tusman
    • 1
  • Emiliano Gogniat
    • 2
  • Stephan H. Bohm
    • 3
  • Adriana Scandurra
    • 4
  • Fernando Suarez-Sipmann
    • 5
    • 6
  • Agustin Torroba
    • 1
  • Federico Casella
    • 1
  • Sergio Giannasi
    • 2
  • Eduardo San Roman
    • 2
  1. 1.Department of AnesthesiologyHospital Privado de ComunidadMar del PlataArgentina
  2. 2.Department of Critical Care MedicineHospital ItalianoBuenos AiresArgentina
  3. 3.Swisstom AGLandquartSwitzerland
  4. 4.Bioengineering Laboratory, Electronic Department, School of EngineeringMar del Plata UniversityMar del PlataArgentina
  5. 5.Department of Surgical SciencesClinical Physiology University HospitalUppsalaSweden
  6. 6.Instituto de investigación Sanitaria. Fundación Jiménez Díaz. IIS-FJDCIBERESMadridSpain

Personalised recommendations