Journal of Clinical Monitoring and Computing

, Volume 27, Issue 1, pp 1–34 | Cite as

Shedding light on mitochondrial function by real time monitoring of NADH fluorescence: I. Basic methodology and animal studies

  • Avraham Mayevsky
  • Efrat Barbiro-Michaely
Review Paper


Normal mitochondrial function in the process of metabolic energy production is a key factor in maintaining cellular activities. Many pathological conditions in animals, as well as in patients, are directly or indirectly related to dysfunction of the mitochondria. Monitoring the mitochondrial activity by measuring the autofluorescence of NADH has been the most practical approach since the 1950s. This review presents the principles and technological aspects, as well as typical results, accumulated in our laboratory since the early 1970s. We were able to apply the fiber-optic-based NADH fluorometry to many organs monitored in vivo under various pathophysiological conditions in animals. These studies were the basis for the development of clinical monitoring devices as presented in accompanying article. The encouraging experimental results in animals stimulated us to apply the same technology in patients after technological adaptations as described in the accompanying article. Our medical device was approved for clinical use by the FDA.


Cellular energy metabolism In vivo monitoring Intracellular NADH autofluorescence Multiorgan monitoring Tissue oxygen balance Brain metabolism 


  1. 1.
    Ernster L, Schatz G. Mitochondria: a historical review. J Cell Biol. 1981;91:227s–55s.PubMedCrossRefGoogle Scholar
  2. 2.
    Monsalve M, Borniquel S, Valle I, Lamas S. Mitochondrial dysfunction in human pathologies. Front Biosci. 2007;12:1131–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience. 2007;145:1233–48.PubMedCrossRefGoogle Scholar
  4. 4.
    Tatton WG, Olanow CW. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta. 1999;1410:195–213.PubMedCrossRefGoogle Scholar
  5. 5.
    Kermer P, Liman J, Weishaupt JH, Bahr M. Neuronal apoptosis in neurodegenerative diseases: from basic research to clinical application. Neurodegener Dis. 2004;1:9–19.PubMedCrossRefGoogle Scholar
  6. 6.
    Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.PubMedCrossRefGoogle Scholar
  7. 7.
    Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007;292:C670–86.PubMedCrossRefGoogle Scholar
  8. 8.
    Linford NJ, Schriner SE, Rabinovitch PS. Oxidative damage and aging: spotlight on mitochondria. Cancer Res. 2006;66:2497–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Signoretti S, Marmarou A, Aygok GA, Fatouros PP, Portella G, Bullock RM. Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy. J Neurosurg. 2008;108:42–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Robertson CL, Soane L, Siegel ZT, Fiskum G. The potential role of mitochondria in pediatric traumatic brain injury. Dev Neurosci. 2006;28:432–46.PubMedCrossRefGoogle Scholar
  11. 11.
    Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG. Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma. 2007;24:991–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Sims NR, Anderson MF. Mitochondrial contributions to tissue damage in stroke. Neurochem Int. 2002;40:511–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Ballinger SW. Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med. 2005;38:1278–95.PubMedCrossRefGoogle Scholar
  14. 14.
    Porta F, Takala J, Weikert C, et al. Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Crit Care. 2006;10:R118.PubMedCrossRefGoogle Scholar
  15. 15.
    Rotig A. Renal disease and mitochondrial genetics. J Nephrol. 2003;16:286–92.PubMedGoogle Scholar
  16. 16.
    Fink MP. Bench-to-bedside review: cytopathic hypoxia. Crit Care. 2002;6:491–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Crouser ED. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion. 2004;4:729–41.PubMedCrossRefGoogle Scholar
  18. 18.
    Watanabe S, Yaginuma R, Ikejima K, Miyazaki A. Liver diseases and metabolic syndrome. J Gastroenterol. 2008;43:509–18.PubMedCrossRefGoogle Scholar
  19. 19.
    Abdul-Ghani MA, DeFronzo RA. Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus. Curr Diab Rep. 2008;8:173–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Wei Y, Rector RS, Thyfault JP, Ibdah JA. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroenterol. 2008;14:193–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Cunha-Oliveira T, Rego AC, Oliveira CR. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev. 2008;58:192–208.PubMedCrossRefGoogle Scholar
  22. 22.
    Boess F, Ndikum-Moffor FM, Boelsterli UA, Roberts SM. Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species. Biochem Pharmacol. 2000;60:615–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Warburg O. The metabolism of tumours. London: Constable & CO LTD; 1930.Google Scholar
  24. 24.
    Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–70.PubMedGoogle Scholar
  25. 25.
    Weinhouse S. On respiratory impairment in cancer cells. Science. 1956;124:267–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Modica-Napolitano JS, Kulawiec M, Singh KK. Mitochondria and human cancer. Curr Mol Med. 2007;7:121–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene. 2006;25:4647–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Chatterjee A, Mambo E, Sidransky D. Mitochondrial DNA mutations in human cancer. Oncogene. 2006;25:4663–74.PubMedCrossRefGoogle Scholar
  29. 29.
    Mayevsky A, Chance B. A new long-term method for the measurement of NADH fluorescence in intact rat brain with implanted cannula. In: Anonymous international symposium on oxygen transport to tissue. Adv Exp Med Biol. 37A edn. New York: Plenum Press; 1973. p. 239–44.Google Scholar
  30. 30.
    Chance B, Oshino N, Sugano T, Mayevsky A. Basic principles of tissue oxygen determination from mitochondrial signals. In: International symposium on oxygen transport to tissue. Anonymous Adv Exp Med Biol. New York: Plenum Pub. Corp.; 1973. p. 239–44.Google Scholar
  31. 31.
    Chance B, Williams GR. A method for the localization of sites for oxidative phosphorylation. Nature. 1955;176:250–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955;217:409–27.PubMedGoogle Scholar
  33. 33.
    Mayevsky A, Rogatsky GG. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol Cell Physiol. 2007;292:C615–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Chance B, Thorell B. Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem. 1959;234:3044–50.PubMedGoogle Scholar
  35. 35.
    Mayevsky A. Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res Rev. 1984;7:49–68.CrossRefGoogle Scholar
  36. 36.
    Mayevsky A, Chance B. Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science. 1982;217:537–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Pittman RN. Oxygen gradients in the microcirculation. Acta Physiol (Oxf). 2011;202:311–22.CrossRefGoogle Scholar
  38. 38.
    Schober P, Schwarte LA. From system to organ to cell: oxygenation and perfusion measurement in anesthesia and critical care. J Clin Monit Comput. 2012;26:255–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Harms FA, Bodmer SI, Raat NJ, Stolker RJ, Mik EG. Validation of the protoporphyrin IX-triplet state lifetime technique for mitochondrial oxygen measurements in the skin. Opt Lett. 2012;37:2625–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Springett R, Swartz HM. Measurements of oxygen in vivo: overview and perspectives on methods to measure oxygen within cells and tissues. Antioxid Redox Signal. 2007;9:1295–301.PubMedCrossRefGoogle Scholar
  41. 41.
    Wilson DF. Quantifying the role of oxygen pressure in tissue function. Am J Physiol Heart Circ Physiol. 2008;294:H11–3.PubMedCrossRefGoogle Scholar
  42. 42.
    Chance B, Oshino N, Sugano T, Mayevsky A. Basic principles of tissue oxygen determination from mitochondrial signals. In: Bicher HI, Bruley DF, editors. Oxygen transport to tissue. Instrumentation, methods, and physiology. New York: Plenum Publishing Corporation; 1973. p. 277–92.Google Scholar
  43. 43.
    Lubbers DW. Optical sensors for clinical monitoring. Acta Anaesth Scand Suppl. 1995;39:37–54.CrossRefGoogle Scholar
  44. 44.
    Rampil IJ, Litt L, Mayevsky A. Correlated, simultaneous, multiple-wavelength optical monitoring in vivo of localized cerebrocortical NADH and brain microvessel hemoglobin oxygen saturation. J Clin Monit. 1992;8:216–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Frank KH, Kessler M, Appelbaum K, Dummler W. The Erlangen micro-lightguide spectrophotometer EMPHO I. Phys Med Biol. 1989;34:1883–900.PubMedCrossRefGoogle Scholar
  46. 46.
    Stern MD, Lappe DL, Bowen PD, et al. Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol. 1977;232:H441–8.PubMedGoogle Scholar
  47. 47.
    Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W. Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab. 1989;9:589–96.PubMedCrossRefGoogle Scholar
  48. 48.
    Haberl RL, Heizer ML, Ellis EF. Laser-Doppler assessment of brain microcirculation: effect of local alterations. Am J Physiol. 1989;256:H1255–60.PubMedGoogle Scholar
  49. 49.
    Barbiro E, Zurovsky Y, Mayevsky A. Real time monitoring of rat liver energy state during ischemia. Microvasc Res. 1998;56:253–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Mayevsky A, Meilin S, Manor T, Zarchin N, Sonn J. Optical monitoring of NADH redox state and blood flow as indicators of brain energy balance. Adv Exp Med Biol. 1999;471:133–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Mayevsky A, Nakache R, Luger-Hamer M, Amran D, Sonn J. Assessment of transplanted kidney vitality by a multiparametric monitoring system. Transplant Proc. 2001;33:2933–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955;217:383–93.PubMedGoogle Scholar
  53. 53.
    Mayevsky A, Ornstein E, Meilin S, Razon N, Ouaknine GE. The evaluation of brain CBF and mitochondrial function by a fiber optic tissue spectroscope in neurosurgical patients. Acta Neurochir Suppl. 2002;81:367–71.PubMedGoogle Scholar
  54. 54.
    Sonn J, Mayevsky A. Effects of brain oxygenation on metabolic, hemodynamic, ionic and electrical responses to spreading depression in the rat. Brain Res. 2000;882:212–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Mayevsky A, Doron A, Meilin S, Manor T, Ornstein E, Ouaknine GE. Brain viability and function analyzer: multiparametric real-time monitoring in neurosurgical patients. Acta Neurochir Suppl (Wien). 1999;75:63–6.CrossRefGoogle Scholar
  56. 56.
    Harden A, Young W. The alcoholic ferment of yeast-juice. Proc R Soc. 1906;77:105–20.Google Scholar
  57. 57.
    Chance B, Cohen P, Jobsis F, Schoener B. Intracellular oxidation-reduction states in vivo. Science. 1962;137:499–508.PubMedCrossRefGoogle Scholar
  58. 58.
    Chance B, Legallias V, Schoener B. Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal gland. Nature. 1962;195:1073–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Chance B, Schoener B. Correlation of oxidation-reduction changes of intracellular reduced pyridine nucleotide and changes in electro-encephalogram of the rat in anoxia. Nature. 1962;195:956–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Mayevsky A, Manor T, Pewzner E, et al. Tissue spectroscope: a novel in vivo approach to real time monitoring of tissue vitality. J Biomed Opt. 2004;9:1028–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Mayevsky A. Brain energy metabolism of the conscious rat exposed to various physiological and pathological situations. Brain Res. 1976;113:327–38.PubMedCrossRefGoogle Scholar
  62. 62.
    Mayevsky A, Chance B. Oxidation-reduction states of NADH in vivo: from animals to clinical use. Mitochondrion. 2007;7:330–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Mayevsky A. Mitochondrial function and energy metabolism in cancer cells: past overview and future perspectives. Mitochondrion. 2009;9:165–79.PubMedCrossRefGoogle Scholar
  64. 64.
    Mayevsky A, Barbiro-Micahely E. Use of NADH fluorescence to determine mitochondrial function in vivo. Int J Biochem Cell Biol. 2009;41:1977–88.PubMedCrossRefGoogle Scholar
  65. 65.
    Kraut A, Barbiro-Michaely E, Zurovsky Y, Mayevsky A. Multiorgan monitoring of hemodynamic and mitochondrial responses to anoxia and cardiac arrest in the rat. Adv Exp Med Biol. 2003;510:299–304.PubMedCrossRefGoogle Scholar
  66. 66.
    Kraut A, Barbiro-Michaely E, Mayevsky A. Differential effects of norepinephrine on brain and other less vital organs detected by a multisite multiparametric monitoring system. Med Sci Monit. 2004;10:BR215–20.PubMedGoogle Scholar
  67. 67.
    Tolmasov M, Barbiro-Micahely E, Mayevsky A. Simultaneously multiparametric spectroscopic monitoring of tissue viability in the brain and small intestine. SPIE Proc. 2007;6434:1N-1–9.Google Scholar
  68. 68.
    Barbiro-Michaely E, Tolmasov M, Rinkevich-Shop S, Sonn J, Mayevsky A. Can the brain sparing effect be detected in small animal model? Med Sci Monitor. 2007;13:BR211–9.Google Scholar
  69. 69.
    Mendelbaum MM, Barbiro-Micahely E, Tolmasov M, Mayevsky A. Effects of severe hemorrhage on in vivo brain and small intestine mitochondrial NADH and microcirculatory blood flow. J Innov Opt Health Sci. 2008;1:177–83.CrossRefGoogle Scholar
  70. 70.
    Tolmasov M, Barbiro-Micahely E, Mayevsky A. The involvement of nitric oxide in the hemodynamic and metabolic state of the brain and the small intestine. SPIE Proc. 2009;7169:O61–067.Google Scholar
  71. 71.
    Amran-Cohen D, Sonn J, Luger-Hamer M, Mayevsky A. The effect of ischemia and hypoxia on renal blood flow, energy metabolism and function in vivo. Adv Exp Med Biol. 2003;540:93–101.PubMedGoogle Scholar
  72. 72.
    Luger-Hamer M, Barbiro-Michaely E, Sonn J, Mayevsky A. Renal viability evaluated by the multiprobe assembly: a unique tool for the assessment of renal ischemic injury. Nephron Clin Pract. 2008;111:c29–38.PubMedCrossRefGoogle Scholar
  73. 73.
    Clavijo JA, Van Bastelaar J, Pinsky MR, Puyana JC, Mayevsky A. A minimally invasive real time monitoring of mitochondrial NADH and tissue blood flow in the urethral wall during hemorrhage and resuscitation. Med Sci Monitor. 2008;14(9):BR175–82.Google Scholar
  74. 74.
    Mayevsky A, Walden R, Heldenberg E, et al. Real time monitoring of mitochondrial function and blood flow in the urethral wall of critical care patients. J Biomed Opt. 2011;16(6):067004-1-21.Google Scholar
  75. 75.
    Mayevsky A, Preisman S, Willenz PE, et al. Evaluation of the CritiView in a pig model of abdominal aortic occlusion and graded hemorrhage. SPIE Proc. 2009;7173:OL1–10.Google Scholar
  76. 76.
    Kedem J, Mayevsky A, Sonn J, Acad BA. An experimental approach for evaluation of the O2 balance in local myocardial regions in vivo. Q J Exp Physiol. 1981;66:501–14.PubMedGoogle Scholar
  77. 77.
    Sonn J, Acad B, Mayevsky A, Kedem J. Effect of coronary vasodilation produced by hypopnea upon regional myocardial oxygen balance. Arch Int Physiol Biochim. 1981;89:445–55.PubMedCrossRefGoogle Scholar
  78. 78.
    Sonn J, Mayevsky A, Acad B, Guggenheimer E, Kedem J. Effect of local ischemia on the myocardial oxygen balance and its response to heart rate elevation. Q J Exp Physiol. 1982;67:335–48.PubMedGoogle Scholar
  79. 79.
    Osbakken M, Mayevsky A. Multiparameter monitoring and analysis of in vivo ischemic and hypoxic heart. J Basic Clin Physiol Pharmacol. 1996;7:97–113.PubMedCrossRefGoogle Scholar
  80. 80.
    Osbakken M, Mayevsky A, Ponomarenko I, Zhang D, Duska C, Chance B. Combined in vivo NADH fluorescence and 31P-NMR to evaluate myocardial oxidative phosphorylation. J Appl Cardiol. 1989;4:305–13.Google Scholar
  81. 81.
    Osbakken M, Doliba N, Mitchell MD, Ivanics T, Zhang D, Mayevsky A. Acetylcholine: is it a myocardial metabolic regulator? J Appl Cardiol. 1990;5:357–66.Google Scholar
  82. 82.
    Osbakken M, Mitchell M, Zhang D, Mayevsky A, Chance B. In vivo correlation of myocardial metabolism, perfusion and mechanical function during increased cardiac work. Cardiovasc Res. 1991;25:749–56.PubMedCrossRefGoogle Scholar
  83. 83.
    Simonovich M, Barbiro-Micahely E, Mayevsky A. Real time monitoring of mitochondrial NADH and microcirculatory blood flow in the spinal cord. SPINE. 2008;33:2495–502.PubMedCrossRefGoogle Scholar
  84. 84.
    Simonovich M, Barbiro-Michaely E, Salame K, Mayevsky A. A new approach to monitor spinal cord vitality in real time. Adv Exp Med Biol. 2003;540:125–32.PubMedGoogle Scholar
  85. 85.
    Granot E, Sonn J, Etziony R, Mayevsky A. Effect of hypothermia on brain multiparametric activities in normoxic and partial ischemic rats. Comp Biochem Physiol Part A. 2002;132:239–46.Google Scholar
  86. 86.
    Barbiro-Michaely E, Mayevsky A. Multiparametric monitoring of brain functions under elevated intracranial pressure in a rat model. J Neurotrauma. 2001;18:711–25.CrossRefGoogle Scholar
  87. 87.
    Barbiro-Michaely E, Mayevsky A. Effects of elevated ICP on brain function: can the multiparametric monitoring system detect the ‘Cushing Response’? Neurol Res. 2003;25:42–52.PubMedCrossRefGoogle Scholar
  88. 88.
    Rogatsky GG, Sonn J, Kamenir Y, Zarchin N, Mayevsky A. Relationship between intracranial pressure and cortical spreading depression following fluid percussion brain injury in rats. J Neurotrauma. 2003;20:1315–25.PubMedCrossRefGoogle Scholar
  89. 89.
    Barbiro-Micahely E, Mayevsky A, Knoller N, Hadani M. In vivo multiparametric monitoring of brain functions under intracranial hypertension following mannitol administration. Neurol Res. 2005;27:88–93.CrossRefGoogle Scholar
  90. 90.
    Rogatsky GG, Kamenir Y, Mayevsky A. Effect of hyperbaric oxygenation effect on intracranial pressure elevation rate in rats during the early phase of severe traumatic brain injury. Brain Res. 2005;1047:131–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Barbiro-Micahely E, Bachbut G, Mayevsky A. Effects of compression injury on brain mitochondrial and tissue viability evaluated by a multiparametric monitoring system. SPIE Proc. 2008;6848:M1–8.Google Scholar
  92. 92.
    Manor T, Barbiro-Michaely E, Rogatsky G, Mayevsky A. Real-time multi-site multi-parametric monitoring of rat brain subjected to traumatic brain injury. Neurol Res. 2008;30:1075–83.PubMedCrossRefGoogle Scholar
  93. 93.
    Barbiro-Micahely E, Arnon H, Mayevsky A. Evaluation of mitochondrial NADH and brain functions during retraction using a multiparametric monitoring system. SPIE Proc. 2009;7280:1I1–9.Google Scholar
  94. 94.
    Barbiro-Micahely E, Manor T, Rogatsky GG, Mayevsky A. How does anesthesia affect various levels of experimental traumatic brain injury? J Innovat Opt Health Sci. 2011;4(4):409–420.Google Scholar
  95. 95.
    Kanner AA, Rappaport ZH, Manor T, Mayevsky A. Multiparametric monitoring of rat brain retraction. Proc SPIE. 2002;4623:206–13.CrossRefGoogle Scholar
  96. 96.
    Mayevsky A. Ischemia in the brain: the effects of carotid artery ligation and decapitation on the energy state of the awake and anesthetized rat. Brain Res. 1978;140:217–30.PubMedCrossRefGoogle Scholar
  97. 97.
    Crowe W, Mayevsky A, Mela L. The dynamics of K+ leakage and recovery in cerebral ischemia. In: Leter A, Saba T, Mela L, editors. Advances in shock research. New York: Alan R. Liss; 1979. p. 221–32.Google Scholar
  98. 98.
    Mayevsky A, Ventura V, Zarchin N. Metabolic responses to hyperbaric oxygenation in the normoxic and ischemic brain. In: Bitterman N, Lincoln R, editors. Eilat, Israel: Israel Navy (GENERIC); 1989. p. 102–7.Google Scholar
  99. 99.
    Mayevsky A, Breuer Z. The Mongolian gerbil as a model for cerebral ischemia. In: Schurr A, Rigor BM, editors. Cerebral ischemia and cerebral resuscitation. Boca Raton: CRC Press; 1990. p. 27–46.Google Scholar
  100. 100.
    Mayevsky A. Level of ischemia and brain functions in the Mongolian gerbil in vivo. Brain Res. 1990;524:1–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Mayevsky A, Yoles E, Zarchin N, Kaushansky D. Brain vascular ionic and metabolic responses to ischemia in the Mongolian gerbil. J Basic Clin Physiol Pharmacol. 1990;1:207–20.PubMedCrossRefGoogle Scholar
  102. 102.
    Mayevsky A, Friedli CM, Reivich M. Metabolic, ionic and electrical responses of the gerbil brain to ischemia. Am J Physiol. 1985;248:R99–107.PubMedGoogle Scholar
  103. 103.
    Mayevsky A, Kaplan H, Haveri J, Haselgrove J, Chance B. Three-dimensional metabolic mapping of the freeze-trapped brain: effects of ischemia on the Mongolian gerbil. Brain Res. 1986;367:63–72.PubMedCrossRefGoogle Scholar
  104. 104.
    Mayevsky A, Zarchin N. Metabolic ionic and electrical activities during and after incomplete or complete cerebral ischemia in the Mongolian gerbil. In: Silver IA, Silver A, editors. Oxygen transport to tissue. IX: Plenum Press; 1987. p. 265–73.Google Scholar
  105. 105.
    Mayevsky A, Zarchin N. Microcirculatory and ionic events during and after incomplete or complete cerebral ischemia in the Mongolian gerbil. In: Tomita M, Sawada T, Naritomi H, Heiss WD, editors. Cerebral hyperemia and ischemia. Excerpta Medica; 1988. p. 157–69.Google Scholar
  106. 106.
    Mayevsky A. Microcirculatory and ionic responses to ischemia in the Mongolian gerbil. In: Manabe H, Zweifach BW, Massmer K, editors. Microcirculation in circulatory disorders. Berlin: Springer; 1988. p. 273–6.CrossRefGoogle Scholar
  107. 107.
    Cohen S, Mayevsky A. Effects of nimodipine on the responses to cerebral ischemia in the Mongolian gerbil. Adv Exp Med Biol. 1989;248(429–38):429–38.PubMedCrossRefGoogle Scholar
  108. 108.
    Mayevsky A, Sclarsky DS. Correlation of brain NADH redox state, K+, PO2 and electrical activity during hypoxia, ischemia and spreading depression. In: Anonymous oxygen transport to tissue, IV. New York: Plenum Press; 1983. p. 129–41.Google Scholar
  109. 109.
    Mayevsky A, Zarchin N, Kaplan H, Haveri J, Haselgrove J, Chance B. Brain metabolic responses to ischemia in the Mongolian gerbil: in vivo and freeze trapped redox state scanning. Brain Res. 1983;276:95–107.PubMedCrossRefGoogle Scholar
  110. 110.
    Meilin S, Zarchin N, Mayevsky A. Inter-relation between hemodynamic, metabolic, ionic and electrical activities during ischemia and reperfusion in the gerbil brain. Neurol Res. 1999;21:699–704.PubMedGoogle Scholar
  111. 111.
    Breuer Z, Mayevsky A. Brain vasculature and mitochondrial responses to ischemia in gerbils: II. Strain differences and statistical evaluation. Brain Res. 1992;598:251–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Yoles E, Zurovsky Y, Zarchin N, Mayevsky A. Brain metabolic and ionic responses to global brain ischemia in the newborn dog in vivo. I. Methodological aspects. Neurol Res. 2000;22:505–11.PubMedGoogle Scholar
  113. 113.
    Yoles E, Zarchin N, Zurovsky Y, Mayevsky A. Metabolic and ionic responses to global brain ischemia in the newborn dog in vivo: II. Post-natal age aspects. Neurol Res. 2000;22:623–9.PubMedGoogle Scholar
  114. 114.
    Mayevsky A, Sonn J, Manor T, Razon N, Ouaknine GE. Responses to cortical spreading depression during normoxia and ischemia: multiparametric monitoring study in animals and the human brain. In: Ischemic blood flow in the brain. Keio Symposium (GENERIC); 2000. p. 343–50.Google Scholar
  115. 115.
    Ligeti L, Mayevsky A, Ruttner Z, Kovach AG, McLaughlin AC. Can the Indo-1 fluorescence approach measure brain intracellular calcium in vivo? A multiparametric study of cerebrocortical anoxia and ischemia. Cell Calcium. 1997;21:115–24.PubMedCrossRefGoogle Scholar
  116. 116.
    Krakovsky M, Rogatsky GG, Zarchin N, Mayevsky A. Effect of hyperbaric oxygen therapy on survival after global cerebral ischemia in rats. Surg Neurol. 1998;49:412–416.Google Scholar
  117. 117.
    Zarchin N, Guggenheimer-Furman E, Meilin S, Ornstein E, Mayevsky A. Thiopental induced cerebral protection during ischemia in gerbils. Brain Res. 1998;780:230–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Chance B, Mayevsky A, Guan B, Zhang Y. Hypoxia/ischemia triggers a light scattering event in rat brain. Adv Exp Med Biol. 1997;428(457–67):457–67.PubMedCrossRefGoogle Scholar
  119. 119.
    Mayevsky A, Zarchin N, Sonn J. Brain redox state and O2 balance in experimental spreading depression and ischemia. In: Lehmenkuhler A, Grotemeyer K-H, Tegtmeier F, editors. Migraine—basic mechanisms and treatment. Munchen-Wier: Urban & Schwarzenberg; 1993. p. 379–93.Google Scholar
  120. 120.
    Rogatsky GG, Mayevsky A, Shifrin EG. Hyperbaric oxygenation as treatment of acute ischemic stroke: Future perspectives. In: Caplan LR, Shifrin E, Nicolaides AN, Moore W, editors. Cerebrovascular ischemia, investigation and management. Los Angeles: Med-Orion Publ. Com; 1996. p. 293–306.Google Scholar
  121. 121.
    Livnat A, Barbiro-Micahely E, Tolmasov M, Mayevsky A. Real-time monitoring of mitochondrial function and cerebral blood flow following focal ischemia in rats. J Innov Opt Health Sci. 2008;1:63–9.CrossRefGoogle Scholar
  122. 122.
    Mayevsky A, Sonn J, Barbiro-Micahely E. Mitochondrial function and physiological activities of the brain exposed to hypoxia and ischemia. In: Océane MR, editor. Brain hypoxia ischemia research progress. NY: Nova Science Publishers, Inc.; 2008. p. 83–111.Google Scholar
  123. 123.
    Zarchin N, Meilin A, Mendelman A, Mayevsky A. Age-related alteration of brain function during cerebral ischemia. Adv Exp Med Biol. 2003;540:109–15.PubMedGoogle Scholar
  124. 124.
    Silberstein BR, Mayevsky A, Chance B. Metabolic responses of the gerbil brain cortex to anoxia, spreading depression, carotid occlusion and stroke. In: Dutton PL, Leigh J, Scarpa A, editors. Frontiers in bienergetics: from electrons to tissues. New York: Academic Press; 1978. p. 1477–85.CrossRefGoogle Scholar
  125. 125.
    Mayevsky A, Zarchin N. The effects of unilateral carotid occlusion on the responses to decapitation in the gerbil brain. Brain Res. 1981;206:155–60.PubMedCrossRefGoogle Scholar
  126. 126.
    Mayevsky A, Duckrow RB, Yoles E, Zarchin N, Kanshansky D. Brain mitochondrial redox state, tissue hemodynamic and extracellular ion responses to four-vessel occlusion and spreading depression in the rat. Neurol Res. 1990;12:243–8.PubMedGoogle Scholar
  127. 127.
    Livnat A, Barbiro-Micahely E, Mayevsky A. Mitochondrial function and cerebral blood flow responses under unilateral carotid occlusion in rats. SPIE Proc. 2009;7180:031–8.Google Scholar
  128. 128.
    Mayevsky A, Chance B. Metabolic responses of the awake cerebral cortex to anoxia hypoxia spreading depression and epileptiform activity. Brain Res. 1975;98:149–65.PubMedCrossRefGoogle Scholar
  129. 129.
    Yoles E, Zarchin N, Mayevsky A. Effects of age on the metabolic ionic and electrical responses to anoxia in the newborn dog brain in vivo. J Basic Clin Physiol Pharmacol. 1991;2:297–313.PubMedCrossRefGoogle Scholar
  130. 130.
    Mayevsky A, Nioka S, Subramanian VH, Chance B. Microcirculatory responses to brain hypoxia in the newborn dog as evaluated by P-NMR spectroscopy and NADH fluorometry/reflectometry in vivo. In: Tsuchiya M, Asano M, Mishima Y, Oda M, editors. Microcirculation—an upadate. Excerpta Medica; 1987. p. 49–50.Google Scholar
  131. 131.
    Nioka S, Chance B, Smith DS, et al. Cerebral energy metabolism and oxygen state during hypoxia in neonate and adult dogs. Pediatr Res. 1990;28:54–62.PubMedCrossRefGoogle Scholar
  132. 132.
    Yoles E, Zarchin N, Zurovsky Y, Guggenheimer-Furman E, Mayevsky A. Brain metabolic and ionic responses to systemic hypoxia in the newborn dog in vivo [in process citation]. Neurol Res. 1999;21:765–70.PubMedGoogle Scholar
  133. 133.
    Mayevsky A, Ziv I. Oscillations of cortical oxidative metabolism and microcirculation in the ischemic brain. Neurol Res. 1991;13:39–47.PubMedGoogle Scholar
  134. 134.
    Kanner AA, Rappaport Z, Manor T, Barbiro-Michaely E, Mendelman A, Mayevsky A. Multiparameteric monitoring of rat brain functions during experimental retraction. Neurosci Lett Suppl. 1998;51:S21.Google Scholar
  135. 135.
    Mayevsky A, Kraut A, Manor T, Sonn J, Zurovsky Y. Optical monitoring of tissue viability using reflected spectroscopy in vivo. In: Tuchin VV, editor. Optical technologies in biophysics and medicine. SPIE, Saratov fall meeting; 2001. p. 409–17.Google Scholar
  136. 136.
    Mayevsky A, Manor T, Meilin S, Razon N, Ouaknine GE, Orenstein E. Multiparametric monitoring of tissue vitality in clinical situations. Proc SPIE. 2001;4255:33–9.CrossRefGoogle Scholar
  137. 137.
    Sonn J, Mayevsky A. The effect of ethanol on metabolic, hemodynamic and electrical responses to cortical spreading depression. Brain Res. 2001;908:174–86.PubMedCrossRefGoogle Scholar
  138. 138.
    Meilin S, Mendelman A, Sonn J, Manor T, Zarchin N, Mayevsky A. Metabolic and hemodynamic oscillations monitored optically in the brain exposed to various pathological states. Adv Exp Med Biol. 1999;471(141–6):141–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Mayevsky A, Rogatsky GG, Sonn J. New multiparametric monitoring approach for real-time evaluation of drug tissue interaction in vivo. Drug Dev Res. 2000;50:457–70.CrossRefGoogle Scholar
  140. 140.
    Meilin S, Zarchin N, Mayevsky A, Shapira S. Multiparametric responses to cortical spreading depression under nitric oxide synthesis inhibition. In: Weissman BA, Alon N, Shapira S, editors. Biochemical pharmacological and clinical aspects of nitric oxide. New York: Plenum Press; 1995. p. 195–204.CrossRefGoogle Scholar
  141. 141.
    Meilin S, Rogatsky GG, Thom SR, Zarchin N, Guggenheimer-Furman E, Mayevsky A. Effects of carbon monoxide exposure on the brain may be mediated by nitric oxide. J Appl Physiol. 1996;81:1078–83.PubMedGoogle Scholar
  142. 142.
    Rifkind JM, Nagababu E, Barbiro-Micahely E, Ramsamy S, Pluta RM, Mayevsky A. Nitrite infusion increases cerebral blood flow and decreases mean arterial blood pressure in rats: A role for red cell NO. Nitric Oxide. 2007;16:448–56.PubMedCrossRefGoogle Scholar
  143. 143.
    Eibeshitz E, Barbiro-Micahely E, Mayevsky A. The role of nitric oxide in the ischemic brain evaluated by spectroscopic monitoring of mitochondrial NADH, microcirculatory blood flow and HbO2. SPIE Proc. 2009;7280:1J1–10.Google Scholar
  144. 144.
    Mayevsky A, Rogatsky GG, Zarchin N, Thom SR. Interrelation between hyperbaric oxygenation and carbon monoxide intoxication in the rat brain in vivo. In: Bennett PB, Marquis RE, editors. Basic and applied high pressure biology. Rochester: University of Rochester Press; 1993. p. 409–20.Google Scholar
  145. 145.
    Mayevsky A, Meilin A, Rogatsky GG, Zarchin N, Thom SR. Multiparametric monitoring of the awake brain exposed to carbon monoxide. J Appl Physiol. 1995;78:1188–96.PubMedGoogle Scholar
  146. 146.
    Meilin S, Sonn J, Zarchin N, Rogatsky G, Guggenheimer-Furman E, Mayevsky A. Responses of rat brain to induced spreading depression following exposure to carbon monoxide. Brain Res. 1998;780:323–8.PubMedCrossRefGoogle Scholar
  147. 147.
    Mendelman A, Zarchin N, Rifkind J, Mayevsky A. Brain multiparametric responses to carbon monoxide exposure in the aging rat. Brain Res. 2000;867:217–22.PubMedCrossRefGoogle Scholar
  148. 148.
    Mendelman A, Zarchin N, Meilin S, Guggenheimer-Furman E, Thom SR, Mayevsky A. Blood flow and ionic responses in the awake brain due to carbon monoxide. Neurol Res. 2002;24:765–72.PubMedCrossRefGoogle Scholar
  149. 149.
    Rogatsky GG, Meilin S, Zarchin N, Thom SR, Mayevsky A. Hyperbaric oxygenation affects rat brain function after carbon monoxide exposure. Undersea Hyperb Med. 2002;29:50–8.PubMedGoogle Scholar
  150. 150.
    Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, Ouaknine GE. Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res. 1996;740:268–74.PubMedCrossRefGoogle Scholar
  151. 151.
    Mayevsky A, Meilin S, Manor T, Ornstein E, Zarchin N, Sonn J. Multiparametric monitoring of brain oxygen balance under experimental and clinical conditions. Neurol Res. 1998;20(Suppl 1):S76–80.PubMedGoogle Scholar
  152. 152.
    Mayevsky A, Deutsch A, Dekel N, Pewzner E, Jaronkin A. New biomedical device for in vivo multiparametric evaluation of tissue vitality in critical care medicine. In: Vo-Dinh T, Grundfest WS, Benaron DA, Cohn GE, editors. Advanced biomedical and clinical diagnosis system III. Proc: SPIE; 2005. p. 60–70.CrossRefGoogle Scholar
  153. 153.
    Schechter M, Sonn J, Mayevsky A. Brain oxygen balance under various experimental pathophysiological conditions. Adv Exp Med Biol. 2009;645:293–9.PubMedCrossRefGoogle Scholar
  154. 154.
    Mayevsky A, Jamieson D, Chance B. Oxygen poisoning in unanesthetized brain: correlation of pyridine nucleotide redox state and electrical activity. Brain Res. 1974;76:481–91.PubMedCrossRefGoogle Scholar
  155. 155.
    Mayevsky A. The effect of trimethadione on brain energy metabolism and EEG activity of the conscious rat exposed to HPO. J Neurosci Res. 1975;1:131–42.PubMedCrossRefGoogle Scholar
  156. 156.
    Mayevsky A. Multiparameter monitoring of the awake brain under hyperbaric oxygenation. J Appl Physiol. 1983;54:740–8.PubMedGoogle Scholar
  157. 157.
    Rogatsky GG, Shifrin EG, Mayevsky A. Physiologic and biochemical monitoring during hyperbaric oxygenation: a review. Undersea Hyperb Med. 1999;26:111–22.PubMedGoogle Scholar
  158. 158.
    Rogatsky GG, Mayevsky A. The life-saving effect of hyperbaric oxygenation during early phase severe blunt chest injuries. Undersea Hyperbaric Med. 2007;34:75–81.Google Scholar
  159. 159.
    Meirovitch E, Sonn J, Mayevsky A. Effect of hyperbaric oxygenation on brain hemodynamics, hemoglobin oxygenation and mitochondrial NADH. Brain Res Rev. 2007;54:294–304.CrossRefGoogle Scholar
  160. 160.
    Rogatsky GG, Mayevsky A. Acute brain and cardio-respiratory dysfunction after blast/blunt injuries: the life-preserving effects of hyperbaric oxygenation. Crit Rev Phys Rehab Med. 2008;20:99–125.CrossRefGoogle Scholar
  161. 161.
    Zarchin N, Mayevsky A. The effects of age on the metabolic and electrical responses to decapitation in the awake and anesthetized rat brain. Mech Ageing Dev. 1981;16:285–94.PubMedCrossRefGoogle Scholar
  162. 162.
    Zarchin N, Meilin S, Rifkind AJ, Mayevsky A. Hemodynamic, metabolic, ionic, and electrical responses to cortical spreading depression in aging rats. Adv Exp Med Biol. 1999;471(223–30):223–30.PubMedCrossRefGoogle Scholar
  163. 163.
    Zarchin N, Meilin S, Rifkind J, Mayevsky A. Effect of aging on the brain energy-metabolism. Comp Biochem Physiol. 2002;132(part A):117–20.Google Scholar
  164. 164.
    Nioka S, Smith DS, Mayevsky A, et al. Age dependence of steady state mitochondrial oxidative metabolism in the in vivo g hypoxic dog brain. Neurol Res. 1991;13:25–32.PubMedGoogle Scholar
  165. 165.
    Mayevsky A. Metabolic, ionic and electrical responses to experimental epilepsy in the awake rat. In: Baldy M, Moulinier DH, Ingvar DH, Meldrum BS, editors. Proceedings first international congress of cerebral blood flow, metabolism and epilepsy. London: John Libbey; 1983. p. 263–70.Google Scholar
  166. 166.
    Mayevsky A, Chance B. Repetitive patterns of metabolic changes during cortical spreading depression of the awake rat. Brain Res. 1974;65:529–33.PubMedCrossRefGoogle Scholar
  167. 167.
    Mayevsky A, Zeuthen T, Chance B. Measurements of extracellular potassium, ECoG and pyridine nucleotide levels during cortical spreading depression in rats. Brain Res. 1974;76:347–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Crowe W, Mayevsky A, Mela L, Silver IA. Measurements of extracellular potassium, D.C. potential and ECoG in the cortex of the conscious rat during cortical spreading depression. In: Kessler M, et al., editors. Ion and enzyme electrodes in biology and medicine Baltimore. University Park: University Park Press; 1976. p. 299–301.Google Scholar
  169. 169.
    Mayevsky A, Zarchin N, Friedli CM. Factors affecting the oxygen balance in the awake cerebral cortex exposed to spreading depression. Brain Res. 1982;236:93–105.PubMedCrossRefGoogle Scholar
  170. 170.
    Haselgrove JC, Bashford CL, Barlow CH, Quistorff B, Chance B, Mayevsky A. Time resolved 3-D recording of redox ratio during spreading depression in gerbil brain. Brain Res. 1990;506:109–14.PubMedCrossRefGoogle Scholar
  171. 171.
    Maris M, Mayevsky A, Chance B. Frequency domain dynamic measurements of changes of optical pathlength during spreading depression in rodent brain mode. SPIE Proc. 1991;1431:136–48.CrossRefGoogle Scholar
  172. 172.
    Mayevsky A, Weiss HR. Cerebral blood flow and oxygen consumption in cortical spreading depression. J CBF Metab. 1991;11:829–36.Google Scholar
  173. 173.
    Sonn J, Mayevsky A. Effects of anesthesia on the responses to cortical spreading depression in the rat brain in vivo. Neurol Res. 2006;28:206–19.PubMedCrossRefGoogle Scholar
  174. 174.
    Ince C, Coremans JMCC, Bruining HA. In vivo NADH fluorescence. In: Erdmann W, Bruley DF, editors. Oxygen transport to tissue XIV. New York: Plenum Press; 1992. p. 277–96.CrossRefGoogle Scholar
  175. 175.
    Balaban RS, Mandel LJ. Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study. Am J Physiol. 1988;254:F407–16.PubMedGoogle Scholar
  176. 176.
    Harbig K, Chance B, Kovach AGB, Reivich M. In vivo measurement of pyridine nucleotide fluorescence from cat brain cortex. J Appl Physiol. 1976;41:480–8.PubMedGoogle Scholar
  177. 177.
    Bradley RS, Thorniley MS. A review of attenuation correction techniques for tissue fluorescence. J R Soc Interface. 2006;3:1–13.PubMedCrossRefGoogle Scholar
  178. 178.
    Chance B, Williams GR. The respiratory chain and oxidative phosphorylation. In: Nord FF, editor. Advances in enzymology. New York: Interscience Publisher, Inc.; 1956. p. 65–134.Google Scholar
  179. 179.
    Leao AAP. Spreading depression of activity in cerebral cortex. J Neurophysiol. 1944;7:359–90.Google Scholar
  180. 180.
    Rosenthal M, Somjen G. Spreading depression, sustained potential shifts, and metabolic activity of cerebral cortex of cats. J Neurophysiol. 1973;36:739–49.PubMedGoogle Scholar
  181. 181.
    LaManna JC, Peretsman SJ, Light AI, Rosenthal M. Oxygen sufficiency in the “working” brain. In: Kovach AGB, Dora E, Silver IA, editors. Oxygen transport to tissue; 1981. p. 95–96.Google Scholar
  182. 182.
    LaManna JC, Rosenthal M. Effect of ouabain and phenobarbital on oxidative metabolic activity associated with spreading cortical depression in cats. Brain Res. 1975;88:145–9.PubMedCrossRefGoogle Scholar
  183. 183.
    Lothman E, LaManna J, Cordingley G, Rosenthal M, Somjen G. Responses of electrical potential potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Res. 1975;88:15–36.PubMedCrossRefGoogle Scholar
  184. 184.
    Somjen GG, Rosenthal M, Cordingley G, LaManna J, Lothman E. Potassium, neuroglia, and oxidative metabolism in central gray matter. Fed Proc. 1976;35:1266–71.PubMedGoogle Scholar
  185. 185.
    Sylvia AL, Rosenthal M. Effects of age on brain oxidative metabolism in vivo. Brain Res. 1979;165:235–48.PubMedCrossRefGoogle Scholar
  186. 186.
    Haselgrove J, Barlow C, Eleff E, Chance B, Lebordais S. Correlation of electrical signals and mitochondrial redox state during spreading depression. In: Kovach AGB, Dora E, Kessler M, Silver IA, editors. Oxygen transport to tissue. Budapest: Pergamon Press; 1981. p. 25–6.Google Scholar
  187. 187.
    Kovach AGB, Dora E, Gyulai L. Relationship between steady redox state and brain activation- induced NAD/NADH redox responses. Adv Exp Med Biol. 1984;169:81–100.PubMedCrossRefGoogle Scholar
  188. 188.
    Dora E, Gyulai L, Kovach AGB. Determinants of brain activation-induced cortical NAD/NADH responses in vivo. Brain Res. 1984;299:61–72.PubMedCrossRefGoogle Scholar
  189. 189.
    Jobsis FF, O’Connor M, Vitale A, Vreman H. Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. Neurophysiology. 1971;34:735–49.PubMedGoogle Scholar
  190. 190.
    Vern B, Schuette WH, Whitehouse WC, Mutsuga N. Cortical oxygen consumption and NADH fluorescence during metrazol seizures in normotensive and hypotensive cats. Exp Neurol. 1976;52:82–99.CrossRefGoogle Scholar
  191. 191.
    Mayevsky A. Shedding light on the awake brain. In: Dutton PL, Leigh J, Scarpa A, editors. Frontiers in bienergetics: from electrons to tissues. New York: Academic Press; 1978. p. 1467–76.CrossRefGoogle Scholar
  192. 192.
    Mayevsky A. Brain oxygen toxicity. Invited review. In: Bachrach AJ, Matzen MM, editors. Underwater physiology. 8th Symposium undersea medical society, Bethesda, Maryland; 1984, p. 69–89.Google Scholar
  193. 193.
    Mayevsky A, Shaya B. Factors affecting the development of hyperbaric oxygen toxicity in the awake rat brain. J Appl Physiol. 1980;49:700–7.PubMedGoogle Scholar
  194. 194.
    Rosenthal M, Martel DL. Ischemia-induced alterations in oxidative “recovery” metabolism after spreading cortical depression in situ. Exp Neurol. 1979;63:367–78.PubMedCrossRefGoogle Scholar
  195. 195.
    Chance B, Tobels F. Changes in fluorescence in a frog sartorius muscle following a twitch. Nature. 1959;184:195–6.CrossRefGoogle Scholar
  196. 196.
    Chance B. Continuous recording of intracellular reduced pyridine nucleotide changes in skeletal muscle in vivo. Tex Rep Biol Med. 1964;22:836–41.PubMedGoogle Scholar
  197. 197.
    Acad B, Guggenheimer E, Sonn J, Kedem J. Differential effects of various inotropic agents on the intracellular NADH redox level in the in vivo dog heart. J Cardiovasc Pharmacol. 1983;5:284–90.PubMedCrossRefGoogle Scholar
  198. 198.
    Osbakken M, Blum H, Wang DJ, et al. In vivo mechanisms of myocardial functional stability during physiological interventions. Gen Cardiol. 1991;79:1–13.CrossRefGoogle Scholar
  199. 199.
    Chance B, Schoener B, Schindler F. The intracellular oxidation-reduction state. In: Dickens F, Neil E, editors. Oxygen in the animal organism. Oxford: Pergamon Press; 1964. p. 367–92.Google Scholar
  200. 200.
    Rosenthal M, Jobsis FF. Intracellular redox changes in functioning cerebral cortex. II. Effects of direct cortical stimulation. J Neurophysiol. 1971;34:750–62.PubMedGoogle Scholar
  201. 201.
    Crowe W, Mayevsky A, Mela L. Application of a solid membrane ion selective electrode to in vivo measurements. Am J Physiol. 1977;233:C56–60.PubMedGoogle Scholar
  202. 202.
    Mayevsky A, Crowe W, Mela L. The interrelation between brain oxidative metabolism and extracellular potassium in the unanesthetized gerbil. Neurol Res. 1980;1:213–26.PubMedGoogle Scholar
  203. 203.
    Acad B, Sonn J, Furman E, Scheinowitz M, Kedem J. Specific effects of nitroprusside on myocardial O2 balance following coronary ligation in the dog heart. J Cardiovasc Pharmacol. 1987;9:79–86.PubMedGoogle Scholar
  204. 204.
    Mayevsky A, Lebourdais S, Chance B. The interrelation between brain PO2 and NADH oxidation- reduction state in the gerbil. J Neurosci Res. 1980;5:173–82.PubMedCrossRefGoogle Scholar
  205. 205.
    Friedli CM, Sclarsky DS, Mayevsky A. Multiprobe monitoring of ionic, metabolic and electrical activities in the awake brain. Am J Physiol. 1982;243:R462–9.PubMedGoogle Scholar
  206. 206.
    Mayevsky A, Subramanian VH, Nioka S, Barlow C, Haselgrove J, Chance B. Brain energy metabolism evaluated simultaneously in the newborn dog by 31P NMR spectroscopy and NADH fluorometry/reflectometry in vivo. J CBF Metab. 1985; 5(Supplement):400–1.Google Scholar
  207. 207.
    Mayevsky A, Frank KH, Nioka S, Kessler M, Chance B. Oxygen supply and brain function in vivo: a multiparametric monitoring approach in the Mongolian gerbil. In: Piiper J, Goldstick TK, Meyer M, editors. Oxygen transport to tissue XII. New York: Plenum Press; 1990. p. 303–13.CrossRefGoogle Scholar
  208. 208.
    Mayevsky A, Deutsch A, Dekel N, Pewzner E, Jaronkin A. New biomedical device for in vivo multiparametric evaluation of tissue vitality in critical care medicine. In: Vo-Dinh T, Grundfest WS, Benaron DA, Cohn GE, editors. Advanced biomedical and clinical diagnosis system III. Proc SPIE; 2005. p. 60–70.Google Scholar
  209. 209.
    Mayevsky A, Walden R, Pewzner E, et al. Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system. J Biomed Opt. 2011;16:067004.PubMedCrossRefGoogle Scholar
  210. 210.
    Mayevsky A, Barbiro-Micahely E. Shedding light on mitochondrial function by real time monitoring of NADH Fluorescence II. Human studies. J Clin Monit Comput. 2012 (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.The Mina & Everard Goodman Faculty of Life SciencesBar-Ilan UniversityRamat GanIsrael
  2. 2.The Leslie and Susan Gonda Multidisciplinary Brain Research CenterBar-Ilan UniversityRamat GanIsrael

Personalised recommendations