Journal of Clinical Monitoring and Computing

, Volume 27, Issue 1, pp 35–46 | Cite as

Muscle relaxant use during intraoperative neurophysiologic monitoring

  • Tod B. Sloan
Review Paper


Neuromuscular blocking agents have generally been avoided during intraoperative neurophysiological monitoring (IOM) where muscle responses to nerve stimulation or transcranial stimulation are monitored. However, a variety of studies and clinical experience indicate partial neuromuscular blockade is compatible with monitoring in some patients. This review presents these experiences after reviewing the currently used agents and the methods used to assess the blockade. A review was conducted of the published literature regarding neuromuscular blockade during IOM. A variety of articles have been published that give insight into the use of partial pharmacological paralysis during monitoring. Responses have been recorded from facial muscles, vocalis muscles, and peripheral nerve muscles from transcranial or neural stimulation with neuromuscular blockade measured in the muscle tested or in the thenar muscles from ulnar nerve stimulation. Preconditioning of the nervous system with tetanic or sensory stimulation has been used. In patients without neuromuscular pathology intraoperative monitoring using peripheral muscle responses from neural stimulation is possible with partial neuromuscular blockade. Monitoring of muscle responses from cranial nerve stimulation may require a higher degree of stimulation and less neuromuscular blockade. The role of tetanic or sensory conditioning of the nervous system is not fully characterized. The impact of neuromuscular pathology or the effect of partial blockade on monitoring muscle responses from spontaneous neural activity or mechanical nerve stimulation has not been described.


Anesthesiology Muscle relaxants Neuromuscular blockade Electromyography Motor evoked potentials 


  1. 1.
    Borges LF. Motor evoked potentials. Int Anesthesiol Clin. 1990;28:170–3.PubMedGoogle Scholar
  2. 2.
    Kothbauer K. Motor evoked potential monitoring for intramedullary spinal cord surgery. In: Deletis V, Shills J, editors. Neurophysiology in neurosurgery: a modern approach. Amsterdam: Academic Press; 2002. p. 73–92.Google Scholar
  3. 3.
    Fagerlund MJ, Eriksson LI. Current concepts in neuromuscular transmission. Br J Anaesth. 2009;103(1):108–14.PubMedGoogle Scholar
  4. 4.
    Ghai B, Makkar JK, Wig J. Neuromuscular monitoring: a review. J Anesth Clin Pharmacol. 2006;22(4):347–56.Google Scholar
  5. 5.
    Davis L, Britten JJ, Morgan M. Cholinesterase Its significance in anaesthetic practice. Anaesthesia. 1997;52:244–60.PubMedGoogle Scholar
  6. 6.
    Jonsson M, Gurley D, Dabrowski M, Larsson O, Johnson EC, Eriksson LI. Distinct pharmacologic properties of neuromuscular blocking agents on human neuronal nicotinic acetylcholine receptors: a possible explanation for the train-of-four fade. Anesthesiology. 2006;105(3):521–33.PubMedGoogle Scholar
  7. 7.
    Bowman WC. Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Anesth Analg. 1980;59(12):935–43.PubMedGoogle Scholar
  8. 8.
    Fodale V, Santamaria LB. Laudanosine, an atracurium and cisatracurium metabolite. Eur J Anaesthesiol. 2002;19(7):466–73.PubMedGoogle Scholar
  9. 9.
    Motamed C, Donati F. Sevoflurane and isoflurane, but not propofol, decrease mivacurium requirements over time. Can J Anaesth. 2002;49(9):907–12.PubMedGoogle Scholar
  10. 10.
    Hemmerling TM, Schuettler J, Schwilden H. Desflurane reduces the effective therapeutic infusion rate (ETI) of cisatracurium more than isoflurane, sevoflurane, or propofol. Can J Anaesth. 2001;48(6):532–7.PubMedGoogle Scholar
  11. 11.
    Saitoh Y, Toyooka H, Amaha K. Recoveries of post-tetanic twitch and train-of-four responses after administration of vecuronium with different inhalation anaesthetics and neuroleptanaesthesia. Br J Anaesth. 1993;70(4):402–4.PubMedGoogle Scholar
  12. 12.
    Heier T, Caldwell JE. Impact of hypothermia on the response to neuromuscular blocking drugs. Anesthesiology. 2006;104(5):1070–80.PubMedGoogle Scholar
  13. 13.
    Burkett L, Bikhazi GB, Thomas KC Jr, Rosenthal DA, Wirta MG, Foldes FF. Mutual potentiation of the neuromuscular effects of antibiotics and relaxants. Anesth Analg. 1979;58(2):107–15.PubMedGoogle Scholar
  14. 14.
    Heier T, Caldwell JE, Sessler DI, Miller RD. Mild intraoperative hypothermia increases duration of action and spontaneous recovery of vecuronium blockade during nitrous oxide-isoflurane anesthesia in humans. Anesthesiology. 1991;74(5):815–9.PubMedGoogle Scholar
  15. 15.
    Leslie K, Sessler DI, Bjorksten AR, Moayeri A. Mild hypothermia alters propofol pharmacokinetics and increases the duration of action of atracurium. Anesth Analg. 1995;80(5):1007–14.PubMedGoogle Scholar
  16. 16.
    Caldwell JE, Heier T, Wright PM, Lin S, McCarthy G, Szenohradszky J, Sharma ML, Hing JP, Schroeder M, Sessler DI. Temperature-dependent pharmacokinetics and pharmacodynamics of vecuronium. Anesthesiology. 2000;92(1):84–93.PubMedGoogle Scholar
  17. 17.
    Naguib M, Flood P, McArdle JJ, Brenner HR. Advances in neurobiology of the neuromuscular junction: implications for the anesthesiologist. Anesthesiology. 2002;96(1):202–31.PubMedGoogle Scholar
  18. 18.
    Raines DE. Anesthetic and nonanesthetic halogenated volatile compounds have dissimilar activities on nicotinic acetylcholine receptor desensitization kinetics. Anesthesiology. 1996;84(3):663–71.PubMedGoogle Scholar
  19. 19.
    Sine SM. The nicotinic receptor ligand binding domain. J Neurobiol. 2002;53(4):431–46.PubMedGoogle Scholar
  20. 20.
    Gage PW. Ion channels and postsynaptic potentials. Biophys Chem. 1988;29(1–2):95–101.PubMedGoogle Scholar
  21. 21.
    Gage PW, Hamill OP. Effects of anesthetics on ion channels in synapses. Int Rev Physiol. 1981;25:1–45.PubMedGoogle Scholar
  22. 22.
    Spacek A, Nickl S, Neiger FX, Nigrovic V, Ullrich OW, Weindmayr-Goettel M, Schwall B, Taeger K, Kress HG. Augmentation of the rocuronium-induced neuromuscular block by the acutely administered phenytoin. Anesthesiology. 1999;90(6):1551–5.PubMedGoogle Scholar
  23. 23.
    Alloul K, Whalley DG, Shutway F, Ebrahim Z, Varin F. Pharmacokinetic origin of carbamazepine-induced resistance to vecuronium neuromuscular blockade in anesthetized patients. Anesthesiology. 1996;84(2):330–9.PubMedGoogle Scholar
  24. 24.
    Loan PB, Connolly FM, Mirakhur RK, Kumar N, Farling P. Neuromuscular effects of rocuronium in patients receiving beta-adrenoreceptor blocking, calcium entry blocking and anticonvulsant drugs. Br J Anaesth. 1997;78(1):90–1.PubMedGoogle Scholar
  25. 25.
    Ornstein E, Matteo RS, Schwartz AE, Silverberg PA, Young WL, Diaz J. The effect of phenytoin on the magnitude and duration of neuromuscular block following atracurium or vecuronium. Anesthesiology. 1987;67(2):191–6.PubMedGoogle Scholar
  26. 26.
    Fahey MR, Rupp SM, Fisher DM, Miller RD, Sharma M, Canfell C, Castagnoli K, Hennis PJ. The pharmacokinetics and pharmacodynamics of atracurium in patients with and without renal failure. Anesthesiology. 1984;61(6):699–702.PubMedGoogle Scholar
  27. 27.
    Bevan DR, Donati F, Kopman AF. Reversal of neuromuscular blockade. Anesthesiology. 1992;77(4):785–805.PubMedGoogle Scholar
  28. 28.
    Gijsenbergh F, Ramael S, Houwing N, van Iersel T. First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology. 2005;103(4):695–703.PubMedGoogle Scholar
  29. 29.
    Fink H, Hollmann MW. Myths and facts in neuromuscular pharmacology. New developments in reversing neuromuscular blockade. Minerva Anestesiol. 2012;78(4):473–82.PubMedGoogle Scholar
  30. 30.
    Murphy GS, Szokol JW. Monitoring neuromuscular blockade. Int Anesthesiol Clin. 2004;42(2):25–40.PubMedGoogle Scholar
  31. 31.
    Hemmerling TM, Le N. Brief review: neuromuscular monitoring: an update for the clinician. Can J Anaesth. 2007;54(1):58–72.PubMedGoogle Scholar
  32. 32.
    Fuchs-Buder T, Schreiber JU, Meistelman C. Monitoring neuromuscular block: an update. Anaesthesia. 2009;64(Suppl. 1):82–9.PubMedGoogle Scholar
  33. 33.
    Wood SJ, Slater CR. Safety factor at the neuromuscular junction. Prog Neurobiol. 2001;64(4):393–429.PubMedGoogle Scholar
  34. 34.
    Waud BE, Waud DR. The relation between the response to “train-of-four” stimulation and receptor occlusion during competitive neuromuscular block. Anesthesiology. 1972;37(4):413–6.PubMedGoogle Scholar
  35. 35.
    Paton WD, Waud DR. The margin of safety of neuromuscular transmission. J Physiol. 1967;191(1):59–90.PubMedGoogle Scholar
  36. 36.
    Lee C, Katz RL. Fade of neurally evoked compound electromyogram during neuromuscular block by d-tubocurarine. Anesth Analg. 1977;56(2):271–5.PubMedGoogle Scholar
  37. 37.
    Kopman AF, Klewicka MM, Neuman GG. The relationship between acceleromyographic train-of-four fade and single twitch depression. Anesthesiology. 2002;96(3):583–7.PubMedGoogle Scholar
  38. 38.
    Gibson FM, Mirakhur RK, Clarke RS, Brady MM. Quantification of train-of-four responses during recovery of block from non-depolarising muscle relaxants. Acta Anaesthesiol Scand. 1987;31(7):655–7.PubMedGoogle Scholar
  39. 39.
    O’Hara DA, Fragen RJ, Shanks CA. Comparison of visual and measured train-of-four recovery after vecuronium-induced neuromuscular blockade using two anaesthetic techniques. Br J Anaesth. 1986;58(11):1300–2.PubMedGoogle Scholar
  40. 40.
    Viby-Mogensen J, Howardy-Hansen P, Chraemmer-Jorgensen B, Ording H, Engbaek J, Nielsen A. Posttetanic count (PTC): a new method of evaluating an intense nondepolarizing neuromuscular blockade. Anesthesiology. 1981;55(4):458–61.PubMedGoogle Scholar
  41. 41.
    Brull SJ, Connelly NR, O’Connor TZ, Silverman DG. Effect of tetanus on subsequent neuromuscular monitoring in patients receiving vecuronium. Anesthesiology. 1991;74(1):64–70.PubMedGoogle Scholar
  42. 42.
    Donati F, Meistelman C, Plaud B. Vecuronium neuromuscular blockade at the diaphragm, the orbicularis oculi, and adductor pollicis muscles. Anesthesiology. 1990;73(5):870–5.PubMedGoogle Scholar
  43. 43.
    Donati F, Meistelman C, Plaud B. Vecuronium neuromuscular blockade at the adductor muscles of the larynx and adductor pollicis. Anesthesiology. 1991;74(5):833–7.PubMedGoogle Scholar
  44. 44.
    Kirov K, Motamed C, Dhonneur G. Differential sensitivity of abdominal muscles and the diaphragm to mivacurium: an electromyographic study. Anesthesiology. 2001;95(6):1323–8.PubMedGoogle Scholar
  45. 45.
    Pansard JL, Chauvin M, Lebrault C, Gauneau P, Duvaldestin P. Effect of an intubating dose of succinylcholine and atracurium on the diaphragm and the adductor pollicis muscle in humans. Anesthesiology. 1987;67(3):326–30.PubMedGoogle Scholar
  46. 46.
    Plaud B, Debaene B, Donati F. The corrugator supercilii, not the orbicularis oculi, reflects rocuronium neuromuscular blockade at the laryngeal adductor muscles. Anesthesiology. 2001;95(1):96–101.PubMedGoogle Scholar
  47. 47.
    Isono S, Ide T, Kochi T, Mizuguchi T, Nishino T. Effects of partial paralysis on the swallowing reflex in conscious humans. Anesthesiology. 1991;75(6):980–4.PubMedGoogle Scholar
  48. 48.
    Pavlin EG, Holle RH, Schoene RB. Recovery of airway protection compared with ventilation in humans after paralysis with curare. Anesthesiology. 1989;70(3):381–5.PubMedGoogle Scholar
  49. 49.
    D’Honneur G, Guignard B, Slavov V, Ruggier R, Duvaldestin P. Comparison of the neuromuscular blocking effect of atracurium and vecuronium on the adductor pollicis and the geniohyoid muscle in humans. Anesthesiology. 1995;82(3):649–54.PubMedGoogle Scholar
  50. 50.
    Eriksson LI, Sundman E, Olsson R, Nilsson L, Witt H, Ekberg O, Kuylenstierna R. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology. 1997;87(5):1035–43.PubMedGoogle Scholar
  51. 51.
    Abdulatif M, El-Sanabary M. Blood flow and mivacurium-induced neuromuscular block at the orbicularis oculi and adductor pollicis muscles. Br J Anaesth. 1997;79(1):24–8.PubMedGoogle Scholar
  52. 52.
    Rimaniol JM, Dhonneur G, Sperry L, Duvaldestin P. A comparison of the neuromuscular blocking effects of atracurium, mivacurium, and vecuronium on the adductor pollicis and the orbicularis oculi muscle in humans. Anesth Analg. 1996;83(4):808–13.PubMedGoogle Scholar
  53. 53.
    Wright PM, Caldwell JE, Miller RD. Onset and duration of rocuronium and succinylcholine at the adductor pollicis and laryngeal adductor muscles in anesthetized humans. Anesthesiology. 1994;81(5):1110–5.PubMedGoogle Scholar
  54. 54.
    Sloan TB. Nondepolarizing neuromuscular blockade does not alter sensory evoked potentials. J Clin Monit. 1994;10(1):4–10.PubMedGoogle Scholar
  55. 55.
    Schwentker MC, Russell GB, Rodichok LD, Segal LS, Schwentker EP, Blackburn TW. Myogenic response distortion of neurogenic motor evoked potential morphology. Anesthesiology. 1995;83(3):616–9.PubMedGoogle Scholar
  56. 56.
    Stephen JP, Sullivan MR, Hicks RG, Burke DJ, Woodforth IJ, Crawford MR. Cotrel-dubousset instrumentation in children using simultaneous motor and somatosensory evoked potential monitoring. Spine. 1996;21(21):2450–7.PubMedGoogle Scholar
  57. 57.
    Levy WJ, McCaffrey M, York DH, Tanzer F. Motor evoked potentials from transcranial stimulation of the motor cortex in cats. Neurosurgery. 1984;15(2):214–27.PubMedGoogle Scholar
  58. 58.
    Rodi Z, Deletis V, Morota N, Vodusek DB. Motor evoked potentials during brain surgery. Pflugers Arch Eur J Physiol. 1996;431(6 Suppl 2):R291–2.Google Scholar
  59. 59.
    Neuloh G, Schramm J. Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg. 2004;100(3):389–99.PubMedGoogle Scholar
  60. 60.
    Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.PubMedGoogle Scholar
  61. 61.
    Sloan TB, Erian R. Effect of atracurium-induced neuromuscular block on cortical motor-evoked potentials. Anesth Analg. 1993;76(5):979–84.PubMedGoogle Scholar
  62. 62.
    Sloan TB, Erian R. Effect of vecuronium-induced neuromuscular blockade on cortical motor evoked potentials. Anesthesiology. 1993;78(5):966–73.PubMedGoogle Scholar
  63. 63.
    Kalkman CJ, Drummond JC, Kennelly NA, Patel PM, Partridge BL. Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesth Analg. 1992;75(4):584–9.PubMedGoogle Scholar
  64. 64.
    Kopman AF. The relationship of evoked electromyographic and mechanical responses following atracurium in humans. Anesthesiology. 1985;63(2):208–11.PubMedGoogle Scholar
  65. 65.
    Kopman AF. The dose-effect relationship of metocurine: the integrated electromyogram of the first dorsal interosseous muscle and the mechanomyogram of the adductor pollicis compared. Anesthesiology. 1988;68(4):604–7.PubMedGoogle Scholar
  66. 66.
    Day BL, Rothwell JC, Thompson PD, Dick JPR, Cowan JMA, Berardelli A, Marsden CD. Motor cortex stimulation in intact man. Multiple descending volleys. Brain. 1987;110:1191–209.PubMedGoogle Scholar
  67. 67.
    Sloan TB. Evoked potentials. Anesthesia and motor evoked-potentials monitoring. In: Deletis V, Shills J, editors. Neurophysiology in neurosurgery. San Diego: Academic Press; 2002. p. 451–64.Google Scholar
  68. 68.
    Cai YR, Xu J, Chen LH, Chi FL, Cai Y-R, Xu J, Chen L-H, Chi F-L. Electromyographic monitoring of facial nerve under different levels of neuromuscular blockade during middle ear microsurgery. Chin Med J. 2009;122(3):311–4.PubMedGoogle Scholar
  69. 69.
    Lennon RL, Hosking MP, Daube JR, Welna JO. Effect of partial neuromuscular blockade on intraoperative electromyography in patients undergoing resection of acoustic neuromas. Anesth Analg. 1992;75(5):729–33.PubMedGoogle Scholar
  70. 70.
    Kizilay A, Aladag I, Cokkeser Y, Miman MC, Ozturan O, Giulhas N. Effectsa of partial neuromuscular blockade on facial nerve monitorization in otologic surgery. Acta Otolaryngol. 2003;123:321–4.PubMedGoogle Scholar
  71. 71.
    Bauer CA, Coker NJ. Update on facial nerve disorders. Otolaryngol Clin North Am. 1996;29(3):445–54.PubMedGoogle Scholar
  72. 72.
    Caffrey RR, Warren ML, Becker KE Jr. Neuromuscular blockade monitoring comparing the orbicularis oculi and adductor pollicis muscles. Anesthesiology. 1986;65(1):95–7.PubMedGoogle Scholar
  73. 73.
    Ho LC, Crosby G, Sundaram P, Ronner SF, Ojemann RG. Ulnar train-of-four stimulation in predicting face movement during intracranial facial nerve stimulation. Anesth Analg. 1989;69(2):242–4.PubMedGoogle Scholar
  74. 74.
    Sharpe MD, Moote CA, Lam AM, Manninen PH. Comparison of integrated evoked EMG between the hypothenar and facial muscle groups following atracurium and vecuronium administration. Can J Anaesth. 1991;38(3):318–23.PubMedGoogle Scholar
  75. 75.
    Blair EA, Teeple E Jr, Sutherland RM, Shih T, Chen D. Effect of neuromuscular blockade on facial nerve monitoring. Am J Otol. 1994;15(2):161–7.PubMedGoogle Scholar
  76. 76.
    Marusch F, Hussock J, Haring G, Hachenberg T, Gastinger I. Influence of muscle relaxation on neuromonitoring of the recurrent laryngeal nerve during thyroid surgery. Br J Anaesth. 2005;94(5):596–600.PubMedGoogle Scholar
  77. 77.
    Chu KS, Wu SH, Lu IC, Tsai CJ, Wu CW, Kuo WR, Lee KW, Chiang FY. Feasibility of intraoperative neuromonitoring during thyroid surgery after administration of nondepolarizing neuromuscular blocking agents. World J Surg. 2009;33(7):1408–13.PubMedGoogle Scholar
  78. 78.
    Oro J, Haghighi SS. Effects of altering core body temperature on somatosensory and motor evoked potentials in rats. Spine. 1992;17(5):498–503.PubMedGoogle Scholar
  79. 79.
    van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, de Boer A, Boezeman EH. Within-patient variability of myogenic motor-evoked potentials to multipulse transcranial electrical stimulation during two levels of partial neuromuscular blockade in aortic surgery. Anesth Analg. 1999;88(1):22–7.PubMedGoogle Scholar
  80. 80.
    Nagle KJ, Emerson RG, Adams DC, Heyer EJ, Roye DP, Schwab FJ, Weidenbaum M, McCormick P, Pile-Spellman J, Stein BM, Farcy JP, Gallo EJ, Dowling KC, Turner CA. Intraoperative monitoring of motor evoked potentials: a review of 116 cases. Neurology. 1996;47(4):999–1004.PubMedGoogle Scholar
  81. 81.
    Scheufler K-M, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg. 2002;96(3):571–9.PubMedGoogle Scholar
  82. 82.
    Hargreaves SJ, Watt JWH. Intravenous anaesthesia and repetitive transcranial magnetic stimulation monitoring in spinal column surgery. Br J Anaesth. 2005;94(1):70–3.PubMedGoogle Scholar
  83. 83.
    Stinson LW Jr, Murray MJ, Jones KA, Assef SJ, Burke MJ, Behrens TL, Lennon RL. A computer-controlled, closed-loop infusion system for infusing muscle relaxants: its use during motor-evoked potential monitoring. J Cardiothorac Vasc Anesth. 1994;8(1):40–4.PubMedGoogle Scholar
  84. 84.
    Shields CB, Paloheimo MPJ, Backman MH, Edmonds HLJ, Johnson JR. Intraoperative use of transcranial magnetic motor evoked potentials. In: Chokroverty S, editor. Magnetic stimulation in clinical neurophysiology. London: Butterworths; 1990. p. 173–84.Google Scholar
  85. 85.
    Edmonds HL Jr, Paloheimo MP, Backman MH, Johnson JR, Holt RT, Shields CB. Transcranial magnetic motor evoked potentials (tcMMEP) for functional monitoring of motor pathways during scoliosis surgery. Spine. 1989;14(7):683–6.PubMedGoogle Scholar
  86. 86.
    Lang EW, Beutler AS, Chesnut RM, Patel PM, Kennelly NA, Kalkman CJ, Drummond JC, Garfin SR. Myogenic motor-evoked potential monitoring using partial neuromuscular blockade in surgery of the spine. Spine. 1996;21(14):1676–86.PubMedGoogle Scholar
  87. 87.
    Lang EW, Chesnut RM, Beutler AS, Kennelly NA, Renaudin JW. The utility of motor-evoked potential monitoring during intramedullary surgery. Anesth Analg. 1996;83(6):1337–41.PubMedGoogle Scholar
  88. 88.
    Glassman SD, Zhang YP, Shields CB, Johnson JR, Linden RD. Transcranial magnetic motor-evoked potentials in scoliosis surgery. Orthopedics. 1995;18(10):1017–23.PubMedGoogle Scholar
  89. 89.
    de Haan P, Kalkman CJ, de Mol BA. Efficacy of transcranial motor-evoked myogenic potentials to detect spinal cord ischemia during operations for thoracoabdominal aneurysms. J Thorac Cardiovasc Surg. 1997;113:87–101.PubMedGoogle Scholar
  90. 90.
    Herdmann J, Lumenta CB, Huse KO. Magnetic stimulation for monitoring of motor pathways in spinal procedures. Spine. 1993;18(5):551–9.PubMedGoogle Scholar
  91. 91.
    Ubags LH, Kalkman CJ, Been HD, Drummond JC. The use of a circumferential cathode improves amplitude of intraoperative electrical transcranial myogenic motor evoked responses. Anesth Analg. 1996;82(5):1011–4.PubMedGoogle Scholar
  92. 92.
    Gugino LD, Aglio LS, Segal NE. Use of transcranial magnetic stimulation for monitoring spinal cord motor paths. Semin Spine Surg. 1997;9:315–36.Google Scholar
  93. 93.
    Lee WY, Hou WY, Yang LH, Lin SM. Intraoperative monitoring of motor function by magnetic motor evoked potentials. Neurosurgery. 1995;36(3):493–500.PubMedGoogle Scholar
  94. 94.
    Yang LH, Lin SM, Lee WY, Liu CC. Intraoperative transcranial electrical motor evoked potential monitoring during spinal surgery under intravenous ketamine or etomidate anaesthesia. Acta Neurochir. 1994;127(3–4):191–8.Google Scholar
  95. 95.
    Tabaraud F, Boulesteix JM, Moulies D, Longis B, Lansade A, Terrier G, Vallat JM, Dumas M, Hugont J. Monitoring of the motor pathway during spinal surgery. Spine. 1993;18(5):546–50.PubMedGoogle Scholar
  96. 96.
    Sekimoto K, Nishikawa K, Ishizeki J, Kubo K, Saito S, Goto F. The effects of volatile anesthetics on intraoperative monitoring of myogenic motor-evoked potentials to transcranial electrical stimulation and on partial neuromuscular blockade during propofol/fentanyl/nitrous oxide anesthesia in humans. J Neurosurg Anesthesiol. 2006;18(2):106–11.PubMedGoogle Scholar
  97. 97.
    Calancie B, Harris W, Broton JG. “Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg. 1998;88:457–70.PubMedGoogle Scholar
  98. 98.
    Pechstein U, Cedzich C, Nadstawek J, Schramm J. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery. 1996; 39(2):335–43 (discussion 343–34).Google Scholar
  99. 99.
    Calancie B, Klose KJ, Baier S, Green BA. Isoflurane induced attenuation of motor evoked potentials caused by electrical motor cortex stimulation during surgery. J Neurosurg. 1991;74:897–904.PubMedGoogle Scholar
  100. 100.
    Ekman A, Stalberg E, Sundman E, Eriksson LI, Brudin L, Sandin R. The effect of neuromuscular block and noxious stimulation on hypnosis monitoring during sevoflurane anesthesia. Anesth Analg. 2007;105(3):688–95.PubMedGoogle Scholar
  101. 101.
    Schwartz DM, Sestokas AK, Dormans JP, Vaccaro AR, Hilibrand AS, Flynn JM, Li PM, Shah SA, Welch W, Drummond DS, Albert TJ. Transcranial electric motor evoked potential monitoring during spine surgery: is it safe? Spine. 2011; 36(13):1046–49 (Phila Pa 1976).Google Scholar
  102. 102.
    Burke D, Hicks RG, Stephen JP. Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex. J Physiol. 1990;425:283–99.PubMedGoogle Scholar
  103. 103.
    Minahan RE, Riley LH 3rd, Lukaczyk T, Cohen DB, Kostuik JP. The effect of neuromuscular blockade on pedicle screw stimulation thresholds. Spine. 2000;25(19):2526–30.PubMedGoogle Scholar
  104. 104.
    Glassman SD, Dimar JR, Puno RM, Johnson JR, Shields CB, Linden RD. A prospective analysis of intraoperative electromyographic monitoring of pedicle screw placement with computed tomographic scan confirmation. Spine. 1995; 20(12):1375–79 (Phila Pa 1976).Google Scholar
  105. 105.
    Owen JH, Kostuik JP, Gornet M, Petr M, Skelly J, Smoes C, Szymanski J, Townes J, Wolfe F. The use of mechanically elicited electromyograms to protect nerve roots during surgery for spinal degeneration. Spine. 1994; 19(15):1704–10 (Phila Pa 1976).Google Scholar
  106. 106.
    Holland NR. Intraoperative electromyography during thoracolumbar spinal surgery. Spine. 1998;23(17):1915–22.PubMedGoogle Scholar
  107. 107.
    Holland NR, Lukaczyk TA, Riley LH, 3rd, Kostuik JP. Higher electrical stimulus intensities are required to activate chronically compressed nerve roots. Implications for intraoperative electromyographic pedicle screw testing. Spine. 1998; 23(2):224–27 (Phila Pa 1976).Google Scholar
  108. 108.
    Hayashi H, Kawaguchi M, Yamamoto Y, Inoue S, Koizumi M, Ueda Y, Takakura Y, Furuya H. Evaluation of reliability of post-tetanic motor-evoked potential monitoring during spinal surgery under general anesthesia. Spine. 2008; 33(26):E994–1000 (Phila Pa 1976).Google Scholar
  109. 109.
    Kakimoto M, Kawaguchi M, Yamamoto Y, Inoue S, Horiuchi T, Nakase H, Sakaki T, Furuya H. Tetanic stimulation of the peripheral nerve before transcranial electrical stimulation can enlarge amplitudes of myogenic motor evoked potentials during general anesthesia with neuromuscular blockade. Anesthesiology. 2005;102(4):733–8.PubMedGoogle Scholar
  110. 110.
    Yamamoto Y, Kawaguchi M, Hayashi H, Horiuchi T, Inoue S, Nakase H, Sakaki T, Furuya H. The effects of the neuromuscular blockade levels on amplitudes of posttetanic motor-evoked potentials and movement in response to transcranial stimulation in patients receiving propofol and fentanyl anesthesia. Anesth Analg. 2008;106(3):930–4.PubMedGoogle Scholar
  111. 111.
    Andersson G, Ohlin A. Spatial facilitation of motor evoked responses in monitoring during spinal surgery. Clin Neurophysiol. 1999;110(4):720–4.PubMedGoogle Scholar
  112. 112.
    Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540:623–33.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations