Skip to main content

Advertisement

Log in

Flow cytometry and laser scanning cytometry, a comparison of techniques

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Objective

Flow and laser scanning cytometry are used extensively in research and clinical settings. These techniques provide clinicians and scientists information about cell functioning in a variety of health and disease states. An in-depth knowledge and understanding of cytometry techniques can enhance interpretation of current research findings. Our goal with this review is to reacquaint clinicians and scientists with information concerning differences between flow and laser scanning cytometry by comparing their capabilities and applications.

Methods

A Pubmed abstract search was conducted for articles on research, reviews and current texts relating to origins and use of flow and laser scanning cytometry. Attention was given to studies describing application of these techniques in the clinical setting.

Results

Both techniques exploit interactions between the physical properties of light. Data are immediately and automatically acquired; they are distinctly different. Flow cytometry provides valuable rapid information about a wide variety of cellular or particle characteristics. This technique does not provide the scanned high resolution image analysis needed for investigators to localize areas of interest within the cell for quantification. Flow cytometry requires that the sample contain a large amount disaggregated, single, suspended cells. Laser scanning cytometry is slide-based and does not require as large of a sample. The tissue sample is affixed to a slide allowing repeated sample analyses. These cytometry techniques are used in the clinical setting to understand pathophysiological derangements associated with many diseases; cardiovascular disease, diabetes, acute lung injury, hemorrhagic shock, surgery, cancer and Alzheimer’s disease.

Conclusions

Understanding the dif- ferences between FCM and LSCM can assist investigators in planning and design of their research or clinical testing. Researchers and clinicians optimize these technique capa- bilities with the cellular characteristics they wish to measure delineating molecular and cellular events occurring in health and disease. Discovery of mechanisms in cells using FCM and LSCM provide evidence needed to guide future treatment and interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarnok A, Gerstner AO. Clinical applications of laser scanning cytometry. Cytometry. 2002;50(3):133–43.

    Article  PubMed  Google Scholar 

  2. Pozarowski P, Holden E, Darzynkiewicz Z. Laser scanning cytometry: principles and applications. Methods Mol Biol. 2006;319:165–92.

    Article  CAS  PubMed  Google Scholar 

  3. Valet G. Past and present concepts in flow cytometry: a European perspective. J Biol Regul Homeost Agents. 2003;17(3):213–22.

    CAS  PubMed  Google Scholar 

  4. Darzynkiewicz Z, Crissman H, Jacobberger JW. Cytometry of the cell cycle: cycling through history. Cytometry A. 2004;58(1):21–32.

    Article  PubMed  Google Scholar 

  5. Kamentsky LA. Laser scanning cytometry. Methods Cell Biol. 2001;63:51–87.

    Article  CAS  PubMed  Google Scholar 

  6. Nolan JP, Yang L. The flow of cytometry into systems biology. Brief Funct Genomic Proteomic. 2007;6(2):81–90.

    Article  CAS  PubMed  Google Scholar 

  7. Shapiro H. Practical flow cytometry. 4th ed. Hoboken: Willey-Liss; 2003.

    Google Scholar 

  8. Rieseberg M, Kasper C, Reardon KF, Scheper T. Flow cytometry in biotechnology. Appl Microbiol Biotechnol. 2001;56(3–4):350–60.

    Article  CAS  PubMed  Google Scholar 

  9. Cram LS. Flow cytometry, an overview. Methods Cell Sci. 2002;24(1–3):1–9.

    Article  CAS  PubMed  Google Scholar 

  10. Luther E, Kamentsky L, Henriksen M, Holden E. Next-generation laser scanning cytometry. Methods Cell Biol. 2004;75:185–218.

    Article  CAS  PubMed  Google Scholar 

  11. Kamentsky LA, Burger DE, Gershman RJ, Kamentsky LD, Luther E. Slide-based laser scanning cytometry. Acta Cytol. 1997;41(1):123–43.

    CAS  PubMed  Google Scholar 

  12. Kamentsky LA, Kamentsky LD, Fletcher JA, Kurose A, Sasaki K. Methods for automatic multiparameter analysis of fluorescence in situ hybridized specimens with a laser scanning cytometer. Cytometry. 1997;27(2):117–25.

    Article  CAS  PubMed  Google Scholar 

  13. Darzynkiewicz Z, Bedner E, Li X, Gorczyca W, Melamed MR. Laser-scanning cytometry: a new instrumentation with many applications. Exp Cell Res. 1999;249(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  14. Wijsman JA, Obert LA, Paulissen J, Garrido R, Toy KA, Dunstan RW. A practical method to determine the amount of tissue to analyze using laser scanning cytometry. Cytometry A. 2007;71(7):501–8.

    PubMed  Google Scholar 

  15. Cram LS, Arndt-Jovin D. Mack Jett Fulwyler, pioneer of flow cytometry and flow sorting (1936–2001). Cytometry A. 2005;67(2):53–4. cover.

    PubMed  Google Scholar 

  16. Mittag A, Lenz D, Gerstner AO, Tarnok A. Hyperchromatic cytometry principles for cytomics using slide based cytometry. Cytometry A. 2006;69(7):691–703.

    PubMed  Google Scholar 

  17. Oswald J, Jorgensen B, Pompe T, et al. Comparison of flow cytometry and laser scanning cytometry for the analysis of CD34+ hematopoietic stem cells. Cytometry A. 2004;57(2):100–7.

    Article  PubMed  Google Scholar 

  18. Bedner E, Burfeind P, Gorczyca W, Melamed MR, Darzynkiewicz Z. Laser scanning cytometry distinguishes lymphocytes, monocytes, and granulocytes by differences in their chromatin structure. Cytometry. 1997;29(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  19. Holden JA. DNA topoisomerases as anticancer drug targets: from the laboratory to the clinic. Curr Med Chem Anticancer Agents. 2001;1(1):1–25.

    Article  CAS  PubMed  Google Scholar 

  20. Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol. 2004;281:301–11.

    CAS  PubMed  Google Scholar 

  21. Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death. J Immunol Methods. 2000;243(1–2):167–90.

    Article  CAS  PubMed  Google Scholar 

  22. Bedner E, Li X, Gorczyca W, Melamed MR, Darzynkiewicz Z. Analysis of apoptosis by laser scanning cytometry. Cytometry. 1999;35(3):181–95.

    Article  CAS  PubMed  Google Scholar 

  23. Darzynkiewicz Z, Bedner E, Traganos F, Murakami T. Critical aspects in the analysis of apoptosis and necrosis. Hum Cell. 1998;11(1):3–12.

    CAS  PubMed  Google Scholar 

  24. Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry. 1997;27(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  25. Matyus AE. Flow cytometry and cell sorting (Vol. 1: Techniques). New York: Plenum Press; 1991.

    Google Scholar 

  26. DeRosa S, Benchley J, Roederer M. Beyond six colors: a new era in flow cytometry. Nat Med. 2003;9(1):112–7.

    Article  CAS  Google Scholar 

  27. Deptala A, Bedner E, Darzynkiewicz Z. Unique analytical capabilities of laser scanning cytometry (LSC) that complement flow cytometry. Folia Histochem Cytobiol. 2001;39(2):87–9.

    CAS  PubMed  Google Scholar 

  28. Herzenberg LA, Tung J, Moore WA, Parks DR. Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol. 2006;7(7):681–5.

    Article  CAS  PubMed  Google Scholar 

  29. Roederer M, Darzynkiewicz Z, Parks DR. Guidelines for the presentation of flow cytometric data. Methods Cell Biol. 2004;75:241–56.

    Article  PubMed  Google Scholar 

  30. Wood JC, Hoffman RA. Evaluating fluorescence sensitivity on flow cytometers: an overview. Cytometry. 1998;33(2):256–9.

    Article  CAS  PubMed  Google Scholar 

  31. Brown M, Wittwer C. Flow cytometry: principles and clinical applications in hematology. Clin Chem. 2000;46(8 Pt 2):1221–9.

    CAS  PubMed  Google Scholar 

  32. Bigalke B, Stellos K, Stakos D, et al. Influence of platelet count on the expression of platelet collagen receptor glycoprotein VI (GPVI) in patients with acute coronary syndrome. Thromb Haemost. 2009;101(5):911–5.

    CAS  PubMed  Google Scholar 

  33. Fox SC, May JA, Shah A, Neubert U, Heptinstall S. Measurement of platelet P-selectin for remote testing of platelet function during treatment with clopidogrel and/or aspirin. Platelets. 2009;20(4):250–9.

    Article  CAS  PubMed  Google Scholar 

  34. Sibal, L., Aldibbiat, A., Agarwal, S.C., et al. Circulating endothelial progenitor cells, endothelial function, carotid intima-media thickness and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular disease or microalbuminuria. Diabetologia 2009; 52(8): 1464–1473

    Google Scholar 

  35. Taatjes DJ, Wadsworth MP, Quinn AS, Rand JH, Bovill EG, Sobel BE. Imaging aspects of cardiovascular disease at the cell and molecular level. Histochem Cell Biol. 2008;130(2):235–45.

    Article  CAS  PubMed  Google Scholar 

  36. Schneider DJ, Hayes M, Wadsworth M, et al. Attenuation of neointimal vascular smooth muscle cellularity in atheroma by plasminogen activator inhibitor type 1 (PAI-1). J Histochem Cytochem. 2004;52(8):1091–9.

    Article  CAS  PubMed  Google Scholar 

  37. Kolackova M, Kudlova M, Kunes P, et al. Early expression of FcgammaRI (CD64) on monocytes of cardiac surgical patients and higher density of monocyte anti-inflammatory scavenger CD163 receptor in “on-pump” patients. Mediators Inflamm 2008;235461.

  38. Ritter L, Funk J, Schenkel L, et al. Inflammatory and hemodynamic changes in the cerebral microcirculation of aged rats after global cerebral ischemia and reperfusion. Microcirculation. 2008;15(4):297–310.

    Article  CAS  PubMed  Google Scholar 

  39. Vega D, Badami CD, Caputo FJ, et al. The influence of the type of resuscitation fluid on gut injury and distant organ injury in a rat model of trauma/hemorrhagic shock. J Trauma. 2008;65(2):409–14. discussion 414–405.

    Article  PubMed  Google Scholar 

  40. Jones R, Capen DE, Jacobson M, Cohen KS, Scadden DT, Duda DG. VEGFR2PDGFRbeta circulating precursor cells participate in capillary restoration after hyperoxia acute lung injury (HALI). J Cell Mol Med 2009; 13(9B), 3720–3729.

    Google Scholar 

  41. Suzuki Y, Nishio K, Takeshita K, et al. Effect of steroid on hyperoxia-induced ICAM-1 expression in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2000;278(2):L245–52.

    CAS  PubMed  Google Scholar 

  42. Chang LT, Sun CK, Chiang CH, Wu CJ, Chua S, Yip HK. Impact of simvastatin and losartan on antiinflammatory effect: in vitro study. J Cardiovasc Pharmacol. 2007;49(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  43. Buder-Hoffmann S, Palmer C, Vacek P, Taatjes D, Mossman B. Different accumulation of activated extracellular signal-regulated kinases (ERK 1/2) and role in cell-cycle alterations by epidermal growth factor, hydrogen peroxide, or asbestos in pulmonary epithelial cells. Am J Respir Cell Mol Biol. 2001;24(4):405–13.

    CAS  PubMed  Google Scholar 

  44. Jin D, Port J, Korst R. Lee P, Li Z, McDonald K, Ferrara C, Meherally D, Rafii S, Altorki N. Surgical resection normalizes the hemangiogenic profile in patients with non-small cell lung cancer. Paper presented at the American Association for Thoracic Surgery. 2007.

  45. Ishikawa M, Nishioka M, Hanaki N, et al. Perioperative immune responses in cancer patients undergoing digestive surgeries. World J Surg Oncol. 2009;7:7.

    Article  PubMed  Google Scholar 

  46. Park MS, Lee HM, Hahn SB, et al. The association of the activation-inducible tumor necrosis factor receptor and ligand with lumbar disc herniation. Yonsei Med J. 2007;48(5):839–46.

    Article  CAS  PubMed  Google Scholar 

  47. Henry M, Davidson L, Cohen Z, McDonagh PF, Nolan PE, Ritter LS. Whole blood aggregation, coagulation, and markers of platelet activation in diet-induced diabetic C57BL/6J mice. Diabetes Res Clin Pract. 2009;84(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  48. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci (Lond). 2004;107(3):273–80.

    Article  CAS  Google Scholar 

  49. Turina M, Miller FN, Tucker CF, Polk HC. Short-term hyperglycemia in surgical patients and a study of related cellular mechanisms. Ann Surg. 2006;243(6):845–51. discussion 851–843.

    Article  PubMed  Google Scholar 

  50. Yow CM, Chen JY, Mak NK, Cheung NH, Leung AW. Cellular uptake, subcellular localization and photodamaging effect of temoporfin (mTHPC) in nasopharyngeal carcinoma cells: comparison with hematoporphyrin derivative. Cancer Lett. 2000;157(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  51. Paiva B, Vidriales MB, Cervero J, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood. 2008;112(10):4017–23.

    Article  CAS  PubMed  Google Scholar 

  52. Al-Mawali A, Gillis D, Lewis I. The role of multiparameter flow cytometry for detection of minimal residual disease in acute myeloid leukemia. Am J Clin Pathol. 2009;131(1):16–26.

    Article  PubMed  Google Scholar 

  53. Landgren O, Albitar M, Ma W, et al. B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med. 2009;360(7):659–67.

    Article  CAS  PubMed  Google Scholar 

  54. Chen H, Sun B, Pan S, Jiang H, Sun X. Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo. Anticancer Drugs. 2009;20(2):131–40.

    Article  PubMed  Google Scholar 

  55. Lu YY, Chen TS, Qu JL, Pan WL, Sun L, Wei XB. Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells. J Biomed Sci. 2009;16:16.

    Article  PubMed  Google Scholar 

  56. Ueno C, Fukatsu K, Kang W, et al. Route and type of nutrition influence nuclear factor kappaB activation in peritoneal resident cells. Shock. 2005;24(4):382–7.

    Article  CAS  PubMed  Google Scholar 

  57. Tomita K, Chikumi H, Tokuyasu H, et al. Functional assay of NF-kappaB translocation into nuclei by laser scanning cytometry: inhibitory effect by dexamethasone or theophylline. Naunyn Schmiedebergs Arch Pharmacol. 1999;359(4):249–55.

    Article  CAS  PubMed  Google Scholar 

  58. Zuba-Surma EK, Kucia M, Abdel-Latif A, Lillard JW Jr, Ratajczak MZ. The ImageStream System: a key step to a new era in imaging. Folia Histochem Cytobiol. 2007;45(4):279–90.

    PubMed  Google Scholar 

Download references

Acknowledgments

This project was sponsored by the TriService Nursing Research Program (N09-012, HU 0001-08-1-TS08). The information or content and conclusions do not necessarily represent the official position or policy of, nor should any official endorsement be inferred by, the TriService Nursing Research Program, the Department of Defense, or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Mach PhD, RN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mach, W.J., Thimmesch, A.R., Orr, J.A. et al. Flow cytometry and laser scanning cytometry, a comparison of techniques. J Clin Monit Comput 24, 251–259 (2010). https://doi.org/10.1007/s10877-010-9242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-010-9242-4

Keywords

Navigation