Facile Green Synthesis of Copper Oxide Nanoparticles and Their Rhodamine-b Dye Adsorption Property

Abstract

Adsorption has gained more popularity in wastewater treatment because the process is non-toxic, cheap, and highly efficient. Environmental and human-friendly adsorbents specifically have a vast prospective. Hence, in the present study, copper oxide nanoparticles (CuONPs) synthesized with Wedelia urticifolia leaf extract were used as adsorbents for Rhodamine-b (RhB) dye. The biomolecules responsible for the synthesis were predicted from Fourier transform infrared (FT-IR) analysis while UV–Visible (UV–Vis) spectroscopy, Dynamic laser spectroscopy (DLS), X-ray diffraction (XRD), and Transmission electron microscopy (TEM) techniques were used for particle characterization. The results revealed that the synthesized nanoparticles are crystalline and spherical with a size of less than 40 nm. The dye adsorption characteristics from the aquatic environment were investigated at room temperature under different doses of CuONPs, initial concentration of RhB dye, and contact time, and over 99% of RhB dye removal was achieved. The adsorption process of RhB dye onto the as-synthesized CuONPs was accurately described by the Freundlich isotherm and pseudo-second-order kinetic models. In summary, the as-synthesized nanoparticles possess an excellent ability for RhB adsorption, and hence these nanoparticles can be used as inexpensive, promising, and potential alternatives to traditional wastewater treatment techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Y. R. Zhang, P. Su, J. Huang, Q. R. Wang, and B. X. Zhao (2015). Chem. Eng. J. 262, 313–318.

    CAS  Article  Google Scholar 

  2. 2.

    S. Khan and A. Malik (2018). Environ. Sci. Pollut. Res. 25, 4446–4458.

    CAS  Article  Google Scholar 

  3. 3.

    F. Nekouei, S. Nekouei, I. Tyagi, and V. K. Gupta (2015). J. Mol. Liq. 201, 124–133.

    CAS  Article  Google Scholar 

  4. 4.

    M. Sharma, P. Das, and S. Datta, In Waste Valorisation and Recycling. (Springer, Singapore, 2019), pp. 453–466.

    Google Scholar 

  5. 5.

    S. Rajendran, M. M. Khan, F. Gracia, J. Qin, V. K. Gupta, and S. Arumainathan (2016). Sci. Rep. 6, 31641.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    S. N. Jain and P. R. Gogate (2019). Int. J. Environ. Res. 13, 337–347.

    CAS  Article  Google Scholar 

  7. 7.

    S. K. R. Yadanaparthi, D. Graybill, and R. Von-Wandruszka (2009). J. Hazard. Mater. 171, 1–15.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    M. Y. Rather, and S. Sundarapandian, (2020). Appl. Nanosci. https://doi.org/https://doi.org/10.1007/s13204-020-01366-2.

  9. 9.

    M. Ghaedi, H. Z. Khafri, A. Asfaram, and A. Goudarzi (2016). Spectrochim. Acta. Part A. 152, 233–240.

    CAS  Article  Google Scholar 

  10. 10.

    E. A. Deliyanni, N. K. Lazaridis, E. N. Peleka, and K. A. Matis (2004). Environ. Sci. Pollut. Res. 11, 18–21.

    CAS  Article  Google Scholar 

  11. 11.

    J. Yan, L. Han, W. Gao, S. Xue, and M. Chen (2015). Bioresour. Technol. 175, 269–274.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    R. S. Kalhapure, S. J. Sonawane, D. R. Sikwal, M. Jadhav, S. Rambharose, C. Mocktar, and T. Govender (2015). Colloids. Surf. B. 136, 651–658.

    CAS  Article  Google Scholar 

  13. 13.

    W. W. Tang, G. M. Zeng, J. L. Gong, J. Liang, P. Xu, C. Zhang, and B. B. Huang (2014). Sci. Total Environ. 468, 1014–1027.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    S. Raina, A. Roy, and N. Bharadvaja (2020). Environ. Nanotechnol. Monit. Manage. 13, 100278.

    Google Scholar 

  15. 15.

    N. Nagar and V. Devra (2018). Mater. Chem. Phys. 213, 44–51.

    CAS  Article  Google Scholar 

  16. 16.

    J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson (2001). Appl. Phys. Lett. 78 (6), 718–720.

    CAS  Article  Google Scholar 

  17. 17.

    N. Nazar, I. Bibi, S. Kamal, M. Iqbal, S. Nouren, K. Jilani, M. Umair, and S. Ata (2018). Int. J. Biol. Macromol. 106, 1203–1210.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang (2014). Prog. Mater. Sci. 60, 208–337.

    CAS  Article  Google Scholar 

  19. 19.

    K. Saravanakumar, S. Shanmugam, N. B. Varukattu, D. MubarakAli, K. Kathiresan, and M. H. Wang (2019). J. Photochem. Photobiol. B.. 190, 103–109.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    A. A. Keller, A. S. Adeleye, J. R. Conway, K. L. Garner, L. Zhao, G. N. Cherr, J. Hong, J. L. Gardea-Torresdey, H. A. Godwin, S. Hanna, and Z. Ji (2017). NanoImpact. 7, 28–40.

    Article  Google Scholar 

  21. 21.

    C. C. Vidyasagar, Y. A. Naik, T. G. Venkatesha, and R. Viswanatha (2012). NanoMicro. Lett. 4, 73–77.

    CAS  Google Scholar 

  22. 22.

    I. Perelshtein, A. Lipovsky, N. Perkas, T. Tzanov, and A. Gedanken (2016). Beilstein. J. Nanotechnol. 7, 1–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    J. Jayaprakash, N. Srinivasan, P. Chandrasekaran, and E. K. Girija (2015). Spectrochim. Acta. Part. A. 136, 1803–1806.

    CAS  Article  Google Scholar 

  24. 24.

    S. R. Ali, M. R. Ghadimi, M. Fecioru-Morariu, B. Beschoten, and G. Güntherodt (2012). Phys. Rev. B.. 85, 012404.

    Article  CAS  Google Scholar 

  25. 25.

    M. Asif (2015). Chem. Int. 1, 134–163.

    CAS  Google Scholar 

  26. 26.

    M. Onditi, G. Bosire, E. Changamu, and C. Ngila (2019). Starch. 71 (1800127), 1–8.

    Google Scholar 

  27. 27.

    S. Francis, S. Joseph, E. P. Koshy, and B. Mathew (2017). Environ. Sci. Pollut. Res. 24, 17347–17357.

    CAS  Article  Google Scholar 

  28. 28.

    S. Singh, A. Kumar, and H. (2020). Appl. Water Sci. 10, 185 (2020).

  29. 29.

    L. Zhu, Y. J. Tian, Y. C. Yin, and S. M. Zhu, Ital. (J. Food, Sci, 2012), p. 24.

    Google Scholar 

  30. 30.

    M. Y. Rather, M. Shincy, and S. Sundarapandian (2020). Micros. Res. Techniq. DOI: https://doi.org/10.1002/jemt.23499.

  31. 31.

    V. Kumar, R. K. Gundampati, D. K. Singh, M. V. Jagannadham, S. Sundar, and S. H. Hasan (2016). J. Ind. Eng. Chem. 37, 224–236.

    CAS  Article  Google Scholar 

  32. 32.

    Y. Choi, S. Kang, S. H. Cha, H. S. Kim, K. Song, Y. J. Lee, K. Kim, Y. S. Kim, S. Cho, and Y. Park (2018). Nanoscale. Res. Lett. 13, 1–10.

    Article  CAS  Google Scholar 

  33. 33.

    P. Kuppusamy, M. M. Yusoff, G. P. Maniam, and N. Govindan (2016). Saudi. Pharm. J. 24, 473–484.

    Google Scholar 

  34. 34.

    H. J. Lee, G. Lee, N. R. Jang, J. H. Yun, J. Y. Song, and B. S. Kim (2011). Nanotechnology. 1, 371–374.

    CAS  Google Scholar 

  35. 35.

    D. Das, B. C. Nath, P. Phukon, and S. K. Dolui (2013). Colloids Surf. B. 101, 430–433.

    CAS  Article  Google Scholar 

  36. 36.

    K. K. Singh, K. K. Senapati, and K. C. Sarma (2017). J. Environ. Chem. Eng. 5, 2214–2221.

    CAS  Article  Google Scholar 

  37. 37.

    R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K. S. Shivashangari, and V. Ravikumar (2014). Spectrochim. Acta. Part A. 121, 746–750.

    CAS  Article  Google Scholar 

  38. 38.

    E. S. Mehr, M. Sorbiun, A. Ramazani, and S. T. Fardood (2018). J. Mater. Sci.-Mater. Electron. 29, 1333–1340.

    Article  CAS  Google Scholar 

  39. 39.

    K. Vishveshvar, M. A. Krishnan, K. Haribabu, and S. Vishnuprasad (2018). BioNanoScience. 8, 554–558.

    Article  Google Scholar 

  40. 40.

    F. D. Koca, D. Demirezen-Yilmaz, F. Duman, and I. Ocsoy (2018). Chem. Ecol. 34, 839–853.

    CAS  Article  Google Scholar 

  41. 41.

    R. Majumdar, B. G. Bag, and N. Maity (2013). Int. Nano. Lett. 3, 53.

    Article  CAS  Google Scholar 

  42. 42.

    A. Munin and F. Edwards-Lévy (2011). Pharmaceutics. 3, 793–829.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    S. Dagher, Y. Haik, A. I. Ayesh, and N. Tit (2014). J. Lumin. 151, 149–154.

    CAS  Article  Google Scholar 

  44. 44.

    S. Gunalan, R. Sivaraj, and R. Venckatesh (2012). Spectrochim. Acta. Part. A. 97, 1140–1144.

    CAS  Article  Google Scholar 

  45. 45.

    M. Nasrollahzadeh, M. Maham, and S. M. Sajadi (2015). J. Colloid. Interface. Sci. 455, 245–253.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    A. H. Keihan, H. Veisi, and H. Veasi (2017). Appl. Organomet. Chem. 31, 3642.

    Article  CAS  Google Scholar 

  47. 47.

    G. K. Devi, K. S. Kumar, R. Parthiban, and K. Kalishwaralal (2017). Microb. Pathog. 102, 120–132.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    N. Edayadulla, N. Basavegowda, and Y. R. Lee (2015). J. Ind. Eng. Chem. 21, 1365–1372.

    CAS  Article  Google Scholar 

  49. 49.

    P. Zhang, D. O’Connor, Y. Wang, L. Jiang, T. Xia, L. Wang, D. C. Tsang, Y. S. Ok, and D. Hou (2020). J. Hazard. Mater. 384, 121286.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    K. K. Deepa, M. Sathishkumar, A. R. Binupriya, G. S. Murugesan, K. Swaminathan, and S. E. Yun (2006). Chemosphere. 62, 833–840.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    N. Sebeia, M. Jabli, A. Ghith, and T. A. Saleh (2020). Arab. J. Chem. 13, 4263–4274.

    CAS  Article  Google Scholar 

  52. 52.

    N. V. Suc, and D. Kim Chi (2017). J. Dispersion. Sci. Technol. 38, 216–222.

  53. 53.

    M. N. Asl, N. M. Mahmodi, P. Teymouri, B. Shahmoradi, R. Rezaee, and A. Maleki (2016). Desalin. Water. Treat. 57, 25278–25287.

    Article  CAS  Google Scholar 

  54. 54.

    R. D. Kale and P. B. Kane (2019). Groundw. Sustain. Dev. 8, 309–318.

    Google Scholar 

  55. 55.

    T. S. Kim, H. J. Song, M. A. Dar, H. J. Lee, and D. W. Kim (2018). Appl. Surf. Sci. 439, 364–370.

    CAS  Article  Google Scholar 

  56. 56.

    S. Sharma, A. Hasan, N. Kumar, and L. M. Pandey (2018). Environ. Sci. Pollut. Res. 25, 21605–21615.

    CAS  Article  Google Scholar 

  57. 57.

    A. U. Rajapaksha, S. S. Chen, D. C. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N. S. Bolan, and Y. S. Ok (2016). Chemosphere. 148, 276–291.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the UGC for providing scholarship during the study period to MYR. The authors are thankful to Central Instrumentation Facility, Pondicherry University for Fourier transform infrared and Transmission electron microscopy analysis, and the Centre for Nanoscience and Nanotechnology for X-ray diffraction characterization. We acknowledge the help of Mr. Mannmohan, Ph.D. Scholar, Centre for Pollution Control and Environmental Engineering, Pondicherry University.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Somaiah Sundarapandian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rather, M.Y., Sundarapandian, S. Facile Green Synthesis of Copper Oxide Nanoparticles and Their Rhodamine-b Dye Adsorption Property. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-02025-4

Download citation

Keywords

  • Adsorption
  • Dye removal
  • Leaf extract
  • Nanoparticles
  • Wastewater treatment