Two Metal–Organic Frameworks: Luminescent Detection Performance and Treatment Activity on Chronic Glomerulus Nephritis Mediated by E. coli Abundance Regulation

Abstract

Two new metal–organic frameworks (MOFs) [Eu(Hpta)(C2O4)]·3H2O (1) and {[Co(pta)]·1.5H2O}n (2) were prepared via reaction of the corresponding metal salts with a bifunctional organic ligand 2-(4-pyridyl)-terephthalic acid (H2pta) under the solvothermal reaction conditions. The Eu(III)-based complex 1 is highly selective and sensitive to Cu2+ in the water solution, and nearly 93% of its fluorescent intensity could be quenched when the Cu2+ ion concentration is 10–2 mol/L. Complex 1 has a relative high quenching constant KSV of 1163 M−1,which might be highly related to its uncoordinated nitrogen sites for the binding with Cu2+ ion in aqueous solution as reflected by the X-ray photoelectron spectroscopy (XPS) analysis (from 399.6 eV to 400.2 eV). Furthermore, they were used for the chronic glomerulus nephritis treatment, the biological activity and detail mechanism was investigated. The CFU assay was implemented to determine the fecal bacterial numbers of Escherichia coli (E. coli) after treated with compound 1 or 2. Afterward, the western blot was implemented to determine the autophagic levels in the renal tubular endothelial cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. 1.

    S. J. Sung and S. M. Fu (2020). J. Autoimmun. 106, 102331.

    CAS  Article  Google Scholar 

  2. 2.

    C. A. Brown, D. R. Rissi, V. M. Dickerson, A. M. Davis, S. A. Brown, and C. W. Schmiedt (2019). Vet. Pathol. 56, 536.

    Article  Google Scholar 

  3. 3.

    C. Yang, J. Xue, N. An, X. J. Huang, Z. H. Wu, L. Ye, Z. H. Li, S. J. Wang, Q. J. Pan, D. Liang, and H. F. Liu (2018). Med. Sci. Monit. 24, 6882.

    CAS  Article  Google Scholar 

  4. 4.

    S. Kalantari, S. Chashmniam, M. Nafar, Z. Zakeri, and M. Parvin (2019). Iran. J. Basic Med. Sci. 22, 1288.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    L. Fan, Z. Liu, Y. Zhang, F. Wang, D. Zhao, J. Yang, and X. Zhang (2019). New J. Chem. 43, 13349.

    CAS  Article  Google Scholar 

  6. 6.

    L. Fan, Y. Zhang, J. Liang, X. Wang, H. Lv, J. Wang, L. Zhao, and X. Zhang (2018). CrystEngComm 20, 4752.

    CAS  Article  Google Scholar 

  7. 7.

    L. Fan, F. Wang, D. Zhao, X. Sun, H. Chen, H. Wang, and X. Zhang (2020). Spectrochim. Acta A 239, 118467.

    CAS  Article  Google Scholar 

  8. 8.

    L. Fan, F. Wang, D. Zhao, Y. Peng, Y. Deng, Y. Luo, and X. Zhang (2020). Appl. Organomet. Chem. 34, e5960.

    CAS  Article  Google Scholar 

  9. 9.

    W. Al Zoubi, M. P. Kamil, S. Fatimah, N. Nashrah, and Y. G. Ko (2020). Prog. Mater. Sci. 112, 100663.

    CAS  Article  Google Scholar 

  10. 10.

    W. Al Zoubi and Y. G. Ko (2018). Chem. Eng. 6, 3546–3555.

    CAS  Google Scholar 

  11. 11.

    D. Yuan, M. Sun, M. Zhao, S. Tang, J. Qi, X. Zhang, K. Wang, and B. Li (2020). Int. J. Electrochem. Sci. 15, 8761–8770.

    Article  Google Scholar 

  12. 12.

    N. Jiang, Y. Liu, X. N. Yu, H. B. Zhang, and M. M. Wang (2020). Int. J. Electrochem. Sci. 15, 5520–5528.

    CAS  Article  Google Scholar 

  13. 13.

    J. X. Li and Z. X. Du (2016). J. Coord. Chem. 69, 2563–2572.

    CAS  Article  Google Scholar 

  14. 14.

    J.X. Li and Z.X. Du (2015) Z. Naturforsch. 70b, 505–511.

  15. 15.

    Z. X. Du and J. X. Li (2015). Inorg. Chim. Acta 436, 159–162.

    CAS  Article  Google Scholar 

  16. 16.

    C. Duan, Z. Su, Y. Cao, L. Hu, D. Fu, J. Ma, and Y. Zhang (2021). J. Clean. Prod. 283, 124635.

    CAS  Article  Google Scholar 

  17. 17.

    M. X. Zheng, X. J. Gao, C. L. Zhang, L. Qin, and H. G. Zheng (2015). Dalt. Trans. 44, 4751.

    CAS  Article  Google Scholar 

  18. 18.

    W. Fan, X. Liu, X. Wang, Y. Li, C. Xing, Y. Wang, W. Guo, L. Zhang, and D. Sun (2018). Inorg. Chem. Front. 5, 2445.

    CAS  Article  Google Scholar 

  19. 19.

    W. Fan, X. Wang, X. Zhang, X. Liu, Y. Wang, Z. Kang, F. Dai, B. Xu, R. Wang, and D. Sun (2019). ACS Cent. Sci. 5, 1261.

    CAS  Article  Google Scholar 

  20. 20.

    Y. Liu, X. Q. Zhou, J. Lu, S. T. Li, Y. Nie, J. L. Tian, X. Liu, and S. P. Yan (2018). Appl. Organomet. Chem. 32, e4617.

    Article  Google Scholar 

  21. 21.

    Z. Abbas, S. Dasari, and A. K. Patra (2017). RSC Adv. 7, 44272–44281.

    CAS  Article  Google Scholar 

  22. 22.

    Y. Cui, B. Chen, and G. Qian (2014). Coord. Chem. Rev. 273–274, 76–86.

    Article  Google Scholar 

  23. 23.

    M. D. Hall, T. W. Failes, N. Yamamoto, and T. W. Hambley (2007). Dalt. Trans. 7, 3983–3990.

    Article  Google Scholar 

  24. 24.

    A. L. Spek (2015). Acta Crystallogr. Sect. C. Struct. Chem. 71, 9.

    CAS  Google Scholar 

  25. 25.

    F. Wang, Y. X. Tan, H. Yang, and Y. Kang (2012). J. Zhang 48, 4842.

    CAS  Google Scholar 

  26. 26.

    H. Wang, J. Qin, C. Huang, Y. Han, W. Xu, and H. Hou (2016). Dalton. Trans. 45, 12710.

    CAS  Article  Google Scholar 

  27. 27.

    H. Li, Y. Han, Z. Shao, N. Li, C. Huang, and H. Hou (2017). Dalton. Trans. 46, 12201.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The study was supported by National Natural Science Foundation of China (81774060).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xu-Dong Xu or Hong-Mei Huan.

Ethics declarations

Conflicts of interest

The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, HR., He, HD., Tang, YY. et al. Two Metal–Organic Frameworks: Luminescent Detection Performance and Treatment Activity on Chronic Glomerulus Nephritis Mediated by E. coli Abundance Regulation. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-02014-7

Download citation

Keywords

  • Coordination polymer
  • Cu2+ ion detection
  • Chronic glomerulus nephritis