Skip to main content
Log in

Benign Synthesis of Cobalt Oxide Nanoparticles Containing Red Algae Extract: Antioxidant, Antimicrobial, Anticancer, and Anticoagulant Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Eco-friendly synthesis of Cobalt oxide nanoparticles (Co3O4NPs) was assessed by the aqueous extract of red algae and their utilization as cytotoxicity, antioxidant, anticoagulant, antibacterial, and anti-cancer properties. UV–vis, SEM, TEM, FTIR, EDAX, XRD, and TGA are tools used for characterization purposes. The size of the Co3O4NPs crystal of 28.2 ± 7.8 nm was measured based on the X-ray diffraction analysis. Biosynthesized Co3O4NPs showed uniform spherical morphology with an average diameter of 29.8 ± 8.6 nm according to TEM and SEM images. Furthermore, Co3O4NPs biological properties such as determination of the antibacterial properties of Co3O4NPs by the zone of inhibition method and the minimum inhibitory concentration (MIC) were determined using a dilution broth agar test. Co3O4NPs indicated higher antibacterial than oxytetracycline standard antibiotics. On the other hand, a scavenging free radical DPPH study was done to determine the propensity for antioxidants that showed a similar capacity for antioxidants in Co3O4NPs. The biosynthesized Co3O4NPs are effective erythrocyte viability dose-dependently and indicated this method was nontoxic. Moreover, bioinspired Co3O4NPs has promising results against HepG2 cancer cells (IC50: 41.4 μg/ml). Most notably, biogenic Co3O4NPs have anticoagulant and thrombolytic activities by the addition of nanoparticles to human blood samples under practical conditions. According to these context findings, Co3O4NPs would be used as a medicinal aid along with its anti-cytotoxic, antioxidant, and effects on bacteria, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Khalid (2020). Nanotechnology and chemical engineering as a tool to bioprocess microalgae for its applications in therapeutics and bioresource management. Crit. Rev. Biotechnol. 40 (1), 46–63.

    Article  PubMed  Google Scholar 

  2. A. C. Santos, et al. (2019). Nanotechnology for the development of new cosmetic formulations. Expert Opin. Drug Deliv. 16 (4), 313–330.

    Article  CAS  PubMed  Google Scholar 

  3. A. M. Atta, et al. (2015). Electrochemical behavior of smart N-isopropyl acrylamide copolymer nanogel on steel for corrosion protection in acidic solution. Int. J. Electrochem. Sci 10, 870–882.

    Google Scholar 

  4. M. F. Abdelbar, et al. (2018). Halogen bond triggered aggregation induced emission in an iodinated cyanine dye for ultra sensitive detection of Ag nanoparticles in tap water and agricultural wastewater. RSC Adv. 8 (43), 24617–24626.

    Article  CAS  Google Scholar 

  5. K. R. Shoueir (2020). Green microwave synthesis of functionalized chitosan with robust adsorption capacities for Cr(VI) and/or RHB in complex aqueous solutions. Environ. Sci. Pollut. Res. 27, 33020–33031.

  6. L. H. Madkour, Properties of nanostructured materials (NSMs) and physicochemical properties of (NPs), in L. H. Madkour (ed.), Nanoelectronic Materials (Springer, Cham, 2019), pp. 479–564.

    Chapter  Google Scholar 

  7. M. E. El-Naggar and K. Shoueir (2020). Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications. J. Environ. Chem. Eng. 8, 104175.

    Article  Google Scholar 

  8. A. Zada, et al. (2020). Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Adv. Funct. Mater. 30 (7), 1906744.

    Article  CAS  Google Scholar 

  9. K. R. Shoueir, et al. (2017). Synthesis of monodisperse core shell PVA@ P (AMPS-co-NIPAm) nanogels structured for pre-concentration of Fe (III) ions. Environ. Technol. 38 (8), 967–978.

    Article  CAS  PubMed  Google Scholar 

  10. H. S. El-Sheshtawy, K. R. Shouir, and M. El-Kemary (2020). Activated H2O2 on Ag/SiO2–SrWO4 surface for enhanced dark and visible-light removal of methylene blue and p-nitrophenol. J. Alloys Compnd. 842, 155848.

    Article  CAS  Google Scholar 

  11. P. G. Jamkhande, et al. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53, 101174.

    Article  CAS  Google Scholar 

  12. V. D. Matteis, et al. (2020). Green plasmonic nanoparticles and bio-inspired stimuli-responsive vesicles in cancer therapy application. Nanomaterials 10 (6), 1083.

    Article  PubMed Central  Google Scholar 

  13. T. Parandhaman, M. D. Dey, and S. K. Das (2019). Biofabrication of supported metal nanoparticles: exploring the bioinspiration strategy to mitigate the environmental challenges. Green Chem. 21 (20), 5469–5500.

    Article  CAS  Google Scholar 

  14. M. H. Teaima, et al. (2020). Eco-friendly synthesis of functionalized chitosan-based nanoantibiotic system for potential delivery of linezolid as antimicrobial agents. Saudi Pharm. J. 28 (7), 859–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. R. El-Shabasy, et al. (2019). A green synthetic approach using chili plant supported Ag/Ag2O@ P25 heterostructure with enhanced photocatalytic properties under solar irradiation. Optik 192, 162943.

    Article  CAS  Google Scholar 

  16. N. Zahin, et al. (2020). Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ. Sci. Pollut. Res. 27, 19151–19168.

  17. M. S. Chavali and M. P. Nikolova (2019). Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 1 (6), 607.

    Article  CAS  Google Scholar 

  18. A. Huang, et al. (2019). A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J. Mater. Sci. 54 (2), 949–973.

    Article  CAS  Google Scholar 

  19. J. Iqbal, et al. (2020). Ternary nanocomposite of cobalt oxide nanograins and silver nanoparticles grown on reduced graphene oxide conducting platform for high-performance supercapattery electrode material. J. Alloys Compnd. 821, 153452.

    Article  CAS  Google Scholar 

  20. N. Jalilian, G. Najafpour, and M. Khajouei (2019). Enhanced vitamin B12 production using Chlorella vulgaris. Int. J. Eng. 32 (1), 1–9.

    Google Scholar 

  21. J. Iqbal, et al. (2019). Biogenic synthesis of green and cost effective cobalt oxide nanoparticles using Geranium wallichianum leaves extract and evaluation of in vitro antioxidant, antimicrobial, cytotoxic and enzyme inhibition properties. Mater. Res. Express 6 (11), 115407.

    Article  Google Scholar 

  22. P. Gómez-López, et al. (2020). Nanomaterials and catalysis for green chemistry. Curr. Opin. Green Sustain. Chem. 24, 48.

    Article  Google Scholar 

  23. A. T. Khalil, et al. (2020). Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab. J. Chem. 13 (1), 606–619.

    Article  CAS  Google Scholar 

  24. R. Fatima, et al. (2020). Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb. Pathog. 138, 103780.

    Article  CAS  PubMed  Google Scholar 

  25. A. Antonacci and V. Scognamiglio (2020). Biotechnological advances in the design of algae-based biosensors. Trends Biotechnol. 38 (3), 334–347.

    Article  CAS  PubMed  Google Scholar 

  26. K. A. Kang, et al. (2005). Antioxidant activity of ethanol extract of Callophyllis japonica. Phytother. Res. 19 (6), 506–510.

    Article  PubMed  Google Scholar 

  27. J.-C. Lee, et al. (2013). Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 13 (1), 1–7.

    Article  Google Scholar 

  28. T. Mousavi, et al. (2020). Drug discovery strategies for modulating oxidative stress in gastrointestinal disorders. Expert Opin. Drug Discov. 15, 1–33.

    Article  Google Scholar 

  29. S. Menon and V. Shanmugam (2020). Chemopreventive mechanism of action by oxidative stress and toxicity induced surface decorated selenium nanoparticles. J. Trace Elem. Med. Biol. 62, 126549.

    Article  CAS  PubMed  Google Scholar 

  30. M. F. Abdelbar, et al. (2020). Highly ordered functionalized mesoporous silicate nanoparticles reinforced poly (lactic acid) gatekeeper surface for infection treatment. Int. J. Biol. Macromol. 156, 858.

    Article  CAS  PubMed  Google Scholar 

  31. H. K. Kim, et al. (2013). Earthworm extracts utilized in the green synthesis of gold nanoparticles capable of reinforcing the anticoagulant activities of heparin. Nanoscale Res. Lett. 8 (1), 542.

    Article  PubMed  PubMed Central  Google Scholar 

  32. S. C. D. Sharma, et al. (2019). Antibacterial and cytotoxic activity of Bacillus methylotrophicus-SCS2012 isolated from soil. J. Microbiol. Biotechnol. Food Sci. 2019, 2293–2307.

    Google Scholar 

  33. N. Z. Shaban, et al. (2020). Chitosan-based dithiophenolato nanoparticles: preparation, mechanistic information of DNA binding, antibacterial and cytotoxic activities. J. Mol. Liq. 318, 114252.

    Article  CAS  Google Scholar 

  34. S. R. Sarker, et al. (2019). Investigation of the antibacterial activity and in vivo cytotoxicity of biogenic silver nanoparticles as potent therapeutics. Front. Bioeng. Biotechnol. 7, 239.

    Article  PubMed  PubMed Central  Google Scholar 

  35. M. Sarkar, et al. (2020). Studies on the antibacterial and catalytic activities of silver nanoparticles synthesized from Cyperus rotundus L. J. Clust. Sci. https://doi.org/10.1007/s10876-020-01785-9.

  36. A. A. El-Bindary, et al. (2020). Metal–organic frameworks as efficient materials for drug delivery: synthesis, characterization, antioxidant, anticancer, antibacterial and molecular docking investigation. Appl. Organometal. Chem. 34, e5905.

    Article  CAS  Google Scholar 

  37. N. Z. Shaban, et al. (2019). Design, DNA binding and kinetic studies, antibacterial and cytotoxic activities of stable dithiophenolato titanium (IV)-chitosan nanocomposite. J. Mol. Liq. 287, 111002.

    Article  CAS  Google Scholar 

  38. M. Azeez, et al. (2020). Green synthesized novel silver nanoparticles and their application as anticoagulant and thrombolytic agents: a perspective. IOP Conf. Ser. 805, 012043.

    Article  CAS  Google Scholar 

  39. J. Iqbal, et al. (2020). Biogenic synthesis of green and cost effective iron nanoparticles and evaluation of their potential biomedical properties. J. Mol. Struct. 1199, 126979.

    Article  CAS  Google Scholar 

  40. M. F. Zayed, et al. (2020). In-vitro antioxidant and antimicrobial activities of metal nanoparticles biosynthesized using optimized Pimpinella anisum extract. Colloid Surf. A 585, 124167.

    Article  CAS  Google Scholar 

  41. R. Koyyati, K. R. Kudle, and P. R. M. Padigya (2016). Evaluation of antibacterial and cytotoxic activity of green synthesized cobalt nanoparticles using Raphanus sativus var. longipinnatus leaf extract. Int. J. PharmTech Res. 9 (3), 466–472.

    CAS  Google Scholar 

  42. B. P. Singh, et al. (2020). Effect of Co and Mn doping on the morphological, optical and magnetic properties of CuO nanostructures. Solid State Sci. 106, 106296.

    Article  CAS  Google Scholar 

  43. S. Vasantharaj, et al. (2019). Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J. Photochem. Photobiol. B 191, 143–149.

    Article  CAS  PubMed  Google Scholar 

  44. G. A. Filip, et al. (2019). UV-light mediated green synthesis of silver and gold nanoparticles using Cornelian cherry fruit extract and their comparative effects in experimental inflammation. J. Photochem. Photobiol. B 191, 26–37.

    Article  CAS  PubMed  Google Scholar 

  45. O. Karaagac, B. B. Yildiz, and H. Köçkar (2019). The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization. J. Magn. Magn. Mater. 473, 262–267.

    Article  CAS  Google Scholar 

  46. K. Ahmed, et al. (2016). Green synthesis of cobalt nanoparticles by using methanol extract of plant leaf as reducing agent. Pure Appl. Biol. 5 (3), 453.

    Article  CAS  Google Scholar 

  47. N. Matinise, et al., Green synthesis of cobalt (II, III) oxide nanoparticles using Moringa Oleifera natural extract as high electrochemical electrode for supercapacitors, in AIP Conference Proceedings (AIP Publishing LLC, 2018).

  48. T. Shahzadi, et al. (2019). Synthesis of eco-friendly cobalt nanoparticles using Celosia argentea plant extract and their efficacy studies as antioxidant, antibacterial, hemolytic and catalytical agent. Arab. J. Sci. Eng. 44 (7), 6435–6444.

    Article  CAS  Google Scholar 

  49. M. Zaib, et al. (2020). Catharanthus roseus extract mediated synthesis of cobalt nanoparticles: evaluation of antioxidant, antibacterial, hemolytic and catalytic activities. Inorg. Nano-Metal Chem. 50, 1–10.

    Google Scholar 

  50. M. K. Ahmed, et al. (2020). Gold as a dopant in selenium-containing carbonated hydroxyapatite fillers of nanofibrous epsilon-polycaprolactone scaffolds for tissue engineering. Int. J. Pharm. 577, 118950.

    Article  CAS  PubMed  Google Scholar 

  51. E. Tacconelli, et al. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18 (3), 318–327.

    Article  PubMed  Google Scholar 

  52. I. Loira, et al. (2020). Applications of nanotechnology in the winemaking process. Eur. Food Res. Technol. 246, 1533–1541.

  53. Z. Cai, et al. (2018). Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environ. Sci. 5 (1), 27–47.

    CAS  Google Scholar 

  54. M. Alavi and M. Rai (2019). Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev. Anti-infect. Ther. 17 (6), 419–428.

    Article  CAS  PubMed  Google Scholar 

  55. A. Singh, et al. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnol. Rep. 25, e00427.

    Article  Google Scholar 

  56. D. J. Banner, et al. (2020). Correlative ex situ and liquid-cell TEM observation of bacterial cell membrane damage induced by rough surface topology. Int. J. Nanomed. 15, 1929.

    Article  CAS  Google Scholar 

  57. Y. N. Slavin, et al. (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15 (1), 1–20.

    Article  Google Scholar 

  58. A. A. Menazea and M. K. Ahmed (2020). Synthesis and antibacterial activity of graphene oxide decorated by silver and copper oxide nanoparticles. J. Mol. Struct. 1218, 128536.

    Article  CAS  Google Scholar 

  59. A. A. Menazea and M. K. Ahmed (2020). Wound healing activity of chitosan/polyvinyl alcohol embedded by gold nanoparticles prepared by nanosecond laser ablation. J. Mol. Struct. 1217, 128401.

    Article  CAS  Google Scholar 

  60. A. A. Menazea and M. K. Ahmed (2020). Silver and copper oxide nanoparticles-decorated graphene oxide via pulsed laser ablation technique: preparation, characterization, and photoactivated antibacterial activity. Nano-Struct. Nano-Objects 22, 100464.

    Article  CAS  Google Scholar 

  61. A. A. Menazea, S. A. Abdelbadie, and M. K. Ahmed (2020). Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications. Appl. Surf. Sci. 508, 145299.

    Article  CAS  Google Scholar 

  62. S. F. Mansour, et al. (2020). Microstructural, morphological behavior and removal of Cr(VI) and Se(IV) from aqueous solutions by magnetite nanoparticles/PVA and cellulose acetate nanofibers. Appl. Phys. A 126 (3), 3377.

    Article  Google Scholar 

  63. N. Arsalan, et al. (2020). Exploring the interaction of cobalt oxide nanoparticles with albumin, leukemia cancer cells and pathogenic bacteria by multispectroscopic, docking, cellular and antibacterial approaches. Int. J. Nanomed. 15, 4607.

    Article  Google Scholar 

  64. V. Gupta, et al. (2020). Comparative assessment of antibacterial efficacy for cobalt nanoparticles, bulk cobalt and standard antibiotics: a concentration dependant study. Haнocиcтeмы: физикa, xимия, мaтeмaтикa 11 (1).

  65. X. Lin, et al. (2019). Trends in disability-adjusted life years of lung cancer among women from 2004 to 2030 in Guangzhou, China: a population-based study. Cancer Epidemiol. 63, 101586.

    Article  PubMed  Google Scholar 

  66. Rawla, P., T. Sunkara, and A. Barsouk, Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Przegląd Gastroenterologiczny, 2019. 14(2): 89.

  67. P. C. Valery, et al. (2018). Projections of primary liver cancer to 2030 in 30 countries worldwide. Hepatology 67 (2), 600–611.

    Article  PubMed  Google Scholar 

  68. S. Iqbal, et al. (2020). Photodynamic therapy, facile synthesis, and effect of sintering temperature on the structure, morphology, optical properties, and anticancer activity of Co3O4 nanocrystalline materials in the HepG2 cell line. J. Photochem. Photobiol. A 386, 112130.

    Article  CAS  Google Scholar 

  69. J. Bai Aswathanarayan, R. Rai Vittal, and U. Muddegowda (2018). Anticancer activity of metal nanoparticles and their peptide conjugates against human colon adenorectal carcinoma cells. Artif. Cells Nanomed. Biotechnol. 46 (7), 1444–1451.

    Article  CAS  PubMed  Google Scholar 

  70. R. Khandelwal, et al. Anti cancer potential of green synthesized silver nanoparticles. in AIP Conference Proceedings (AIP Publishing LLC, 2020).

  71. S. K. Vemuri, et al. (2019). Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: synthesis, biological evaluation, molecular modelling studies. Mater. Sci. Eng. C 99, 417–429.

    Article  CAS  Google Scholar 

  72. N. Z. Jin and S. C. Gopinath (2016). Potential blood clotting factors and anticoagulants. Biomed. Pharmacother. 84, 356–365.

    Article  CAS  PubMed  Google Scholar 

  73. T. Li, D. Yuan, and J. Yuan, Antithrombotic drugs—pharmacology and perspectives, in M. Wang (ed.), Coronary Artery Disease: Therapeutics and Drug Discovery (Springer, Cham, 2020), pp. 101–131.

    Chapter  Google Scholar 

  74. R. S. Mianai, M. A. Ghasemzadeh, and M. R. Monfared (2019). Green fabrication of cobalt NPs using aqueous extract of antioxidant rich zingiber and their catalytic applications for the synthesis of pyrano [2, 3-c] pyrazoles. Comb. Chem. High Throughput Screening 22 (1), 18–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Researchers Supporting Project number (RSP-2020/149), King Saud University, Riyadh, Saudi Arabia.

Funding

This research was funded by the Researchers Supporting Project number (RSP-2020/149), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Taher.

Ethics declarations

Conflict of interest

All procedures by this study were per international ethical standards. The research involved no human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajarem, J.S., Maodaa, S.N., Allam, A.A. et al. Benign Synthesis of Cobalt Oxide Nanoparticles Containing Red Algae Extract: Antioxidant, Antimicrobial, Anticancer, and Anticoagulant Activity. J Clust Sci 33, 717–728 (2022). https://doi.org/10.1007/s10876-021-02004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02004-9

Keywords

Navigation