Magnetic Properties of Mechano-Thermally Processed Nanocrystalline MgFe2O4 Spinel Materials

Abstract

This work highlights the results obtained from different characterizations for the Mg-based spinel ferrite, MgFe2O4 nanomaterials prepared by ball milling followed by annealing at different temperatures, 800 °C, 900 °C, 1000 °C, and 1100 °C each for 2 h. From XRD analysis, the structural data such as lattice parameter, average crystalline size, micro-strain, and dislocation density of different MgFe2O4 samples are obtained. While the produced as-milled powder revealed the majority of the peaks are cubic MgFe2O4 phase materials, the annealed samples yielded phase pure nanocrystalline cubic spinel MgFe2O4 materials. The photoluminescence (PL) intensity of emission peak seen at ~ 417 nm (λexcitation = 375 nm) for different nanocrystalline MgFe2O4 materials varies regardless of the annealing temperatures. The FT-IR results imply the intrinsic stretching vibrations of the Fe–O at the tetrahedral site for these spinel materials. A gradual increase of the saturation magnetization was observed for the present MgFe2O4 materials upon increasing the annealing temperature. These nanocrystalline MgFe2O4 materials may have potential applications in magnetic fluid (hyperthermia) and near-infrared (NIR) pigment applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    A. Alshahrie, S. Joudakzis, A. A. A. Ghamdi, and W. E. M. Elsayed (2018). Optik. 158, 923.

    CAS  Article  Google Scholar 

  2. 2.

    L. John, M. Janetaand, and S. Szafert (2017). Mater. Sci. Eng. C 78, 901.

    CAS  Article  Google Scholar 

  3. 3.

    J. Patil, D. Nadargi, I. S. Mulla, and S. S. Suryavanshi (2018). Mater. Lett. 213, 27.

    CAS  Article  Google Scholar 

  4. 4.

    M. Amiri, K. Eskandari, and M. S. Niasari (2019). Adv. Colloid. Interface Sci. 271, 101982.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    E. A. Chavarriag, A. A. Loper, V. Franco, C. P. Bergmann, and J. Alarcon (2020). J. Magn. Magn. Mater. 497, 166054.

    Article  CAS  Google Scholar 

  6. 6.

    A. Ali, N. H. Idris, N. A. Sazelee, M. S. Yahya, F. A. H. Yap, and M. Ismail (2019). Int. J. Hydrogen Energ. 44, 28227.

    CAS  Article  Google Scholar 

  7. 7.

    D. Narsimulu, B. N. Rao, M. Venkateswarlu, E. S. Srinadhu, and N. Satyanarayan (2016). Ceram. Int. 42, 16789.

    CAS  Article  Google Scholar 

  8. 8.

    H. Tian, J. Peng, T. Lv, C. Sun, and H. He (2018). J. Solid State Chem. 257, 40.

    CAS  Article  Google Scholar 

  9. 9.

    Y. Zu, Y. Zhao, K. Xu, Y. Tong, and F. Zhao (2016). Ceram. Int. 42, 18844.

    CAS  Article  Google Scholar 

  10. 10.

    A. Rostami, B. Atashkar, and H. Gholami (2013). Catal. Commun. 37, 69.

    CAS  Article  Google Scholar 

  11. 11.

    P. D. Stevens, G. Li, J. Fan, M. Yen, and Y. Gao (2005). Chem. Commun. 2005, 4435.

    Article  CAS  Google Scholar 

  12. 12.

    N. K. C. Babu, S. Prathap, and W. Madhuri (2019). J. Supercond. Nov. Magn. 298, 1.

    Google Scholar 

  13. 13.

    R. S. Turtelli, G. V. Duong, W. Nunes, R. Grossinger, and M. Knobel (2008). J. Magn. Magn. Mater. 320, e578.

    Article  CAS  Google Scholar 

  14. 14.

    A. Cannas, A. Ardu, A. Musinu, D. Peddis, and G. Piccaluga (2008). Chem Mater. 20, 6364.

    CAS  Article  Google Scholar 

  15. 15.

    Q. Wu, H. Zhang, L. Zhou, C. Bao, H. Zhu, and Y. Zhang (2016). J. Taiwan Inst. Chem. Eng. 67, 484.

    CAS  Article  Google Scholar 

  16. 16.

    I. Shakir, M. Sarfraz, Z. Ali, M. F. A. Aboud, and P. O. Agbool (2016). J. Alloys Compd. 660, 450.

    CAS  Article  Google Scholar 

  17. 17.

    Z. Bazhan, F. E. Ghodsi, and J. Mazloom (2017). Electrochim. Acta. 250, 143.

    CAS  Article  Google Scholar 

  18. 18.

    M. A. Khan, M. U. Islam, M. Ishaque, and I. Z. Rahman (2012). J. Alloys Compd. 519, 156.

    CAS  Article  Google Scholar 

  19. 19.

    N. Sivakumar, A. Narayanasamy, J. M. Greneche, R. Murugaraj, and Y. S. Lee (2010). J. Alloys Compd. 504, 395.

    CAS  Article  Google Scholar 

  20. 20.

    I. Z. Msomi, W. B. Dlamini, T. Moyo, and P. Ezekiel (2015). J. Magn. Magn. Mater. 373, 68.

    CAS  Article  Google Scholar 

  21. 21.

    A. Chen, Y. Zhang, and C. Tu (2012). Mater. Lett. 82, 10.

    CAS  Article  Google Scholar 

  22. 22.

    M. L. Branham, T. Moyo, H. M. I. Abdallah, and P. Masina (2013). Eur. J. Pharm. Biopharm. 83, 184.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    A. Chen, D. Li, Y. Z. Zhang, and Z. Kang (2013). Ultrason. Sonochem. 20, 1337.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    H. Hirazawa, H. Aono, T. Naohara, T. Maehara, M. Sato, and Y. Watanabe (2011). J. Magn. Magn. Mater. 323, 675.

    CAS  Article  Google Scholar 

  25. 25.

    V. S. Sepelak, D. Schultze, F. Krumeich, U. Steinike, and K. D. Becker (2001). Solid State Ionics 141–142, 677.

    Article  Google Scholar 

  26. 26.

    V. S. Sepelak, D. Baabe, D. Mienert, F. J. Litterst, and K. D. Becker (2003). Scr. Mater. 48, 961.

    CAS  Article  Google Scholar 

  27. 27.

    I. Chand, G. Kumar, P. Kumar, S. K. Sharma, M. Knobel, and M. Singh (2011). J. Alloys Compd. 509, 9638.

    CAS  Article  Google Scholar 

  28. 28.

    I. K. Bamzai, G. Kour, B. Kaur, and S. D. Kulkarni (2013). J. Magn. Magn. Mater. 327, 159.

    CAS  Article  Google Scholar 

  29. 29.

    K. S. Ramakrishna, Ch. Srinivas, S. A. V. Prasad, E. R. Kumar, K. R. Rao, C. L. Prajapat, T. V. C. Rao, S. S. Meena, and D. L. Sastry (2020). J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01773-6.

    Article  Google Scholar 

  30. 30.

    I. Deepty, Ch. Srinivas, K. V. Babu, E. R. Kumar, S. S. Meena, C. L. Prajapat, N. K. Mohan, and D. L. Sastry (2018). J. Magn. Magn. Mater. 466, 60.

    CAS  Article  Google Scholar 

  31. 31.

    A. S. Kamzin, E. Ranjith Kumar, P. Ramadevi, and C. Selvakumar (2017). Phys. Solid State 59, 1841.

    CAS  Article  Google Scholar 

  32. 32.

    A. R. Kumar, A. S. Kamzin, and T. Prakash (2015). J. Magn. Magn. Mater. 378, 389.

    CAS  Article  Google Scholar 

  33. 33.

    S. Balamurugan, L. Ashna, and P. Parthiban (2014). J. Nanotechnol. 2014, 1.

    Article  CAS  Google Scholar 

  34. 34.

    S. Balamurugan, T. K. S. Fathima, and K. Veluraja (2018). J. Alloys Compd. 735, 1227.

    CAS  Article  Google Scholar 

  35. 35.

    B. C. Brightlin and S. Balamurugan (2016). Appl. Nanosci. 6, 1199.

    CAS  Article  Google Scholar 

  36. 36.

    B. C. Brightlin and S. Balamurugan (2017). J. Supercond. Nov. Magn. 30, 215.

    CAS  Article  Google Scholar 

  37. 37.

    S. Balamurugan, B. C. Brightlin, T. Arun, and J. Jainshaa (2019). J. Nanosci. Nanotechnol. 19, 5667.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    B. C. Brightlin and S. Balamurugan (2017). J. Mater. Sci: Mater. Electron. 28, 11907.

    CAS  Google Scholar 

  39. 39.

    B. C. Brightlin, S. Balamurugan, and T. Arun (2017). J. Supercond. Nov. Magn. 30, 1427.

    CAS  Article  Google Scholar 

  40. 40.

    S. Balamurugan, R. Ragasree, T. K. S. Fathima, and B. C. Brightlin (2017). J. Supercond. Nov. Magn. 30, 2211.

    CAS  Article  Google Scholar 

  41. 41.

    A. R. Stokes and A. J. C. Wilson (1944). Proc. Phys. Soc. 56, 174.

    CAS  Article  Google Scholar 

  42. 42.

    Y. Huang, Y. Tang, J. Wang, and Q. Chen (2006). Mater. Chem. Phys. 97, 394.

    CAS  Article  Google Scholar 

  43. 43.

    A. Pradeep and G. Chandrasekaran (2006). Mater. Lett. 60, 371.

    CAS  Article  Google Scholar 

  44. 44.

    V. S. Hafner (1961). Z. Kristallogr. 115, 331.

    CAS  Article  Google Scholar 

  45. 45.

    R. D. Waldron (1955). Phys. Rev. 99, 1727.

    CAS  Article  Google Scholar 

  46. 46.

    A. V. S. Rao, C. N. R. Rao, and J. R. Ferraro (1970). Appl. Spectrosc. 24, 436.

    CAS  Article  Google Scholar 

  47. 47.

    R. K. Kotnala, J. Shah, and R. Gupta (2013). Sens. Actuators B 181, 402.

    CAS  Article  Google Scholar 

  48. 48.

    E. C. Stoner and E. P. Wohlfarth (1948). R. Soc. Lond. A 240, 599.

    Google Scholar 

Download references

Acknowledgments

The author S. Balamurugan is grateful to DST-SERB, Government of India for the Research Grant (Sanction No. CS-108/2011) under the Fast Track-Young Scientist award scheme. The Pondicherry University, Central Instrumentation Facility is acknowledged for the room temperature field dependence magnetization VSM measurements. The SRM Institute of Science and Technology (formerly known as SRM University), Nanotechnology Research Centre (NRC), Chennai is acknowledged for microstructural features (FESEM-EDX). The DST-FIST (Ref. No.: SR/FST/ET-I/2017/87), Government of India is acknowledged for the powder XRD instrumentation (Model D2 Phaser Benchtop (BRUKER)) facility created at the Department of Nanotechnology, Noorul Islam Centre for Higher Education.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Balamurugan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balamurugan, S., Ragasree, R., Brightlin, B.C. et al. Magnetic Properties of Mechano-Thermally Processed Nanocrystalline MgFe2O4 Spinel Materials. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-01998-6

Download citation

Keywords

  • MgFe2O4
  • Nanocrystalline
  • Magnetic-properties
  • Optical-properties
  • Morphology